Sarkar B, Tiwari R, Singha R K, et al.Reforming of methane with CO2 over Ni nanoparticle supported on mesoporous ZSM-5[J].Catal.Today, 2012, 198(1):209-214.
Silva F A, Hori C E, da Silva A M, et al.Hydrogen production through CO2 reforming of CH4 over Pt/CeZrO2/Al2O3 catalysts using a Pd-Ag membrane reactor[J].Catal.Today, 2012, 193(1):64-73.
Koerts T, Deelen M J A G, Van Santen R A.Hydrocarbon formation from methane by a low-temperature two-step reaction sequence[J].J.Catal., 1992, 138(1):101-114.
[15]
Guczi L, van Santen R A, Sarma K V.Low-temperature coupling of methane[J].Catal.Rev., 1996, 38(2):249-296.
[16]
RaskóJ, Solymosi F.Adsorption of CH3 and its reactions with CO2 over TiO2[J].Catal.Lett., 1998, 54(1-2):49-54.
[17]
Guczi L, Sarma K V, BorkóL.Low-temperature methane activation under nonoxidative conditions over supported ruthenium-cobalt bimetallic catalysts[J].J.Catal., 1997, 167(2):495-502.
Huang W, Zuo Z, Han P, et al.XPS and XRD investigation of Co/Pd/TiO2 catalysts by different preparation methods[J].J.Electron Spectrosc.Relat.Phenom., 2009, 173(2):88-95.
[21]
Zsoldos Z, Guczi L.Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts.3.Effect of treatment on the interface layer[J].J.Phys.Chem., 1992, 96(23):9393-9400.
[22]
Mathew T, Shiju N R, Sreekumar K, et al.Cu-Co synergism in Cu1-xCoxFe2O4-catalysis and XPS aspects[J].J.Catal., 2002, 210(2):405-417.
[23]
Chai J W, Pan J S, Wang S J, et al.Thermal behaviour of ultra-thin Co overlayers on rutile TiO2(100) surface[J].Surf.Sci., 2005, 589(1):32-41.
[24]
Cao C, Hu C, Shen W, et al.Fabrication of a novel heterostructure of Co3O4-modified TiO2 nanorod arrays and its enhanced photoelectrochemical property[J].J.Alloy.Compd., 2013, 550:137-143.
[25]
Brik Y, Kacimi M, Ziyad M, et al.Titania-supported cobalt and cobalt-phosphorus catalysts:Characterization and performances in ethane oxidative dehydrogenation[J].J.Catal., 2001, 202(1):118-128.
[26]
Kim M H, Choo K H.Low-temperature continuous wet oxidation of trichloroethylene over CoOx/TiO2 catalysts[J].Catal.Commun., 2007, 8(3):462-466.
[27]
Suriye K, Praserthdam P, Jongsomjit B.Effect of surface sites of TiO2 support on the formation of cobalt-support compound in Co/TiO2 catalysts[J].Catal.Commun., 2007, 8(11):1772-1780.
[28]
Jalama K, Coville N J, Hildebrandt D, et al.Fischer-Tr?psch synthesis over Co/TiO2:Effect of ethanol addition[J].Fuel, 2007, 86(1):73-80.
[29]
Qin D, Lapszewicz J.Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metals[J].Catal.Today, 1994, 21(2):551-560.
[30]
Qin D, Lapszewicz J, Jiang X.Comparison of partial oxidation and steam-CO2 mixed reforming of CH4 to syngas on MgO-supported metals[J].J.Catal., 1996, 159(1):140-149.
[31]
Bi Y, Lu G.Catalytic CO oxidation over palladium supported NaZSM-5 catalysts[J].Appl.Catal.B:Environ., 2003, 41(3):279-286.
[32]
Voogt E H, Mens A J M, Gijzeman O L J, et al.Adsorption of oxygen and surface oxide formation on Pd(111) and Pd foil studied with ellipsometry, LEED, AES and XPS[J].Surf.Sci., 1997, 373(2):210-220.
[33]
Leisenberger F P, Koller G, Sock M, et al.Surface and subsurface oxygen on Pd(111)[J].Surf.Sci., 2000, 445(2):380-393.
[34]
Teschner D, Pestryakov A, Kleimenov E, et al.High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts.Part 1:Effect of gas ambient and temperature[J].J.Catal., 2005, 230(1):186-194.
[35]
Han J, Zemlyanov D Y, Ribeiro F H.Interaction of O2 with Pd single crystals in the range 1-150 Torr:Oxygen dissolution and reaction[J].Surf.Sci., 2006, 600(13):2752-2761.
[36]
Gopinath C S, Thirunavukkarasu K, Nagarajan S.Kinetic evidence for the influence of subsurface oxygen on palladium surfaces towards CO oxidation at high temperatures[J].Chem-Asian J., 2009, 4(1):74-80.