全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

制备方法对Co-Pd/TiO2催化剂催化CH4-CO2梯阶转化的影响

DOI: 10.16085/j.issn.1000-6613.2015.03.024

Keywords: 甲烷,二氧化碳,Co-Pd/TiO2催化剂,浸渍法,溶胶-凝胶法,制备

Full-Text   Cite this paper   Add to My Lib

Abstract:

以钴、钯为活性金属,分别采用浸渍法和溶胶-凝胶法制备了Co-Pd/TiO2催化剂,考察了不同制备方法制备的Co-Pd/TiO2催化剂对CH4-CO2梯阶转化直接合成C2含氧化合物的影响。利用XRD、XPS和N2-吸附-脱附对催化剂进行了表征。结果表明两种方法制备的催化剂反应前与反应后表面织构都存在较大变化,且催化剂中均存在CoTiO3物种,这是活性金属Co与载体TiO2之间发生强相互作用,CO2+替代TiO2晶格中的Ti4+的结果;CoO和金属Pd可能是该反应的活性中心;反应前与反应后溶胶-凝胶法制备的催化剂的表面Co含量均低于浸渍法制备的催化剂,而表面Pd含量则均高于浸渍法制备的催化剂,且溶胶-凝胶法制备的催化剂各种产物的生成速率均高于浸渍法制备的催化剂,因此,与浸渍法制备的催化剂相比,溶胶-凝胶法制备的催化剂具有更好的催化活性。

References

[1]  张志智, 孙潇磊, 张喜文, 等.CO2与乙炔反应合成丙烯酸的可行性研究[J].天然气化工, 2014, 39(1):42-46.
[2]  Kale G R, Kulkarni B D.Hydrogen generation with CO2 utilization:A solvay cluster study[J].Int.J.Hydrogen Energ., 2013, 38(6):2624-2633.
[3]  李美芳, 莫文龙, 马凤云, 等.胶体磨循环浸渍法在CO2-CH4重整催化剂NiO/γ-Al2O3制备中的应用[J].天然气化工, 2014, 39(3):1-4.
[4]  Sarkar B, Tiwari R, Singha R K, et al.Reforming of methane with CO2 over Ni nanoparticle supported on mesoporous ZSM-5[J].Catal.Today, 2012, 198(1):209-214.
[5]  黄伟, 刘桂英, 阴丽华, 等."短接触"CH4-CO2两步反应和CO2加氢研究[J].催化学报, 2004, 25(6):490-494.
[6]  Silva F A, Hori C E, da Silva A M, et al.Hydrogen production through CO2 reforming of CH4 over Pt/CeZrO2/Al2O3 catalysts using a Pd-Ag membrane reactor[J].Catal.Today, 2012, 193(1):64-73.
[7]  谢克昌, 黄伟, 王晓红, 等.CH4-CO2两步反应直接合成含氧有机物的研究——添加氢的影响[J].催化学报, 2003, 24(3):213-218.
[8]  黄伟, 王晓红, 王建平, 等.CH4-CO2两步反应直接转化合成含氧化合物的研究[J].催化学报, 2001, 22(4):321-325.
[9]  Huang W, Xie K C, Wang J P, et al.Possibility of direct conversion of CH4 and CO2 to high-value products[J].J.Catal., 2001, 201(1):100-104.
[10]  丁一慧, 黄伟, 晋萍, 等.甲烷低温催化直接合成乙酸的新途径[J].煤炭转化, 2001, 24(2):32-36.
[11]  章日光, 黄伟, 王宝俊.Co/Pd催化剂上CH4/CO2等温两步反应直接合成乙酸的热力学[J].催化学报, 2008, 29(9):913-920.
[12]  Zuo Z, Huang W, Han P, et al.A density functional theory study of CH4 dehydrogenation on Co(111)[J].Appl.Surf.Sci., 2010, 256(20):5929-5934.
[13]  高仲良, 黄伟, 阴丽华, 等.混合钴源对Co-Pd/TiO2催化剂催化CH4-CO2两步梯阶转化法合成乙酸的性能影响[J].高等学校化学学报, 2012, 33(1):158-165.
[14]  Koerts T, Deelen M J A G, Van Santen R A.Hydrocarbon formation from methane by a low-temperature two-step reaction sequence[J].J.Catal., 1992, 138(1):101-114.
[15]  Guczi L, van Santen R A, Sarma K V.Low-temperature coupling of methane[J].Catal.Rev., 1996, 38(2):249-296.
[16]  RaskóJ, Solymosi F.Adsorption of CH3 and its reactions with CO2 over TiO2[J].Catal.Lett., 1998, 54(1-2):49-54.
[17]  Guczi L, Sarma K V, BorkóL.Low-temperature methane activation under nonoxidative conditions over supported ruthenium-cobalt bimetallic catalysts[J].J.Catal., 1997, 167(2):495-502.
[18]  方奕文, 余林, 余坚, 等.Pd改性TiO2的光谱特性及气相甲苯光催化降解性能[J].湖南师范大学自然科学学报, 2012, 35(3):40-44.
[19]  翟淑波, 孙景辉, 高爽, 等.二氧化硅负载氧化锌催化剂的溶胶-凝胶和浸渍法制备及对仲丁醇分解反应的催化性能[J].高等学校化学学报, 2012, 33(10):2282-2288.
[20]  Huang W, Zuo Z, Han P, et al.XPS and XRD investigation of Co/Pd/TiO2 catalysts by different preparation methods[J].J.Electron Spectrosc.Relat.Phenom., 2009, 173(2):88-95.
[21]  Zsoldos Z, Guczi L.Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts.3.Effect of treatment on the interface layer[J].J.Phys.Chem., 1992, 96(23):9393-9400.
[22]  Mathew T, Shiju N R, Sreekumar K, et al.Cu-Co synergism in Cu1-xCoxFe2O4-catalysis and XPS aspects[J].J.Catal., 2002, 210(2):405-417.
[23]  Chai J W, Pan J S, Wang S J, et al.Thermal behaviour of ultra-thin Co overlayers on rutile TiO2(100) surface[J].Surf.Sci., 2005, 589(1):32-41.
[24]  Cao C, Hu C, Shen W, et al.Fabrication of a novel heterostructure of Co3O4-modified TiO2 nanorod arrays and its enhanced photoelectrochemical property[J].J.Alloy.Compd., 2013, 550:137-143.
[25]  Brik Y, Kacimi M, Ziyad M, et al.Titania-supported cobalt and cobalt-phosphorus catalysts:Characterization and performances in ethane oxidative dehydrogenation[J].J.Catal., 2001, 202(1):118-128.
[26]  Kim M H, Choo K H.Low-temperature continuous wet oxidation of trichloroethylene over CoOx/TiO2 catalysts[J].Catal.Commun., 2007, 8(3):462-466.
[27]  Suriye K, Praserthdam P, Jongsomjit B.Effect of surface sites of TiO2 support on the formation of cobalt-support compound in Co/TiO2 catalysts[J].Catal.Commun., 2007, 8(11):1772-1780.
[28]  Jalama K, Coville N J, Hildebrandt D, et al.Fischer-Tr?psch synthesis over Co/TiO2:Effect of ethanol addition[J].Fuel, 2007, 86(1):73-80.
[29]  Qin D, Lapszewicz J.Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metals[J].Catal.Today, 1994, 21(2):551-560.
[30]  Qin D, Lapszewicz J, Jiang X.Comparison of partial oxidation and steam-CO2 mixed reforming of CH4 to syngas on MgO-supported metals[J].J.Catal., 1996, 159(1):140-149.
[31]  Bi Y, Lu G.Catalytic CO oxidation over palladium supported NaZSM-5 catalysts[J].Appl.Catal.B:Environ., 2003, 41(3):279-286.
[32]  Voogt E H, Mens A J M, Gijzeman O L J, et al.Adsorption of oxygen and surface oxide formation on Pd(111) and Pd foil studied with ellipsometry, LEED, AES and XPS[J].Surf.Sci., 1997, 373(2):210-220.
[33]  Leisenberger F P, Koller G, Sock M, et al.Surface and subsurface oxygen on Pd(111)[J].Surf.Sci., 2000, 445(2):380-393.
[34]  Teschner D, Pestryakov A, Kleimenov E, et al.High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts.Part 1:Effect of gas ambient and temperature[J].J.Catal., 2005, 230(1):186-194.
[35]  Han J, Zemlyanov D Y, Ribeiro F H.Interaction of O2 with Pd single crystals in the range 1-150 Torr:Oxygen dissolution and reaction[J].Surf.Sci., 2006, 600(13):2752-2761.
[36]  Gopinath C S, Thirunavukkarasu K, Nagarajan S.Kinetic evidence for the influence of subsurface oxygen on palladium surfaces towards CO oxidation at high temperatures[J].Chem-Asian J., 2009, 4(1):74-80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133