Purpose. To investigate the association of cumulative lifetime knee joint force on the risk of self-reported medically-diagnosed knee osteoarthritis (OA). Methods. Exposure data on lifetime physical activity type (occupational, household, sport/recreation) and dose (frequency, intensity, duration) were collected from 4,269 Canadian men and women as part of the Physical Activity and Joint Heath cohort study. Subjects were ranked in terms of the “cumulative peak force index”, a measure of lifetime mechanical knee force. Multivariable logistic regression was conducted to obtain adjusted effects for mean lifetime knee force on the risk of knee OA. Results. High levels of total lifetime, occupational and household-related force were associated with an increased in risk of OA, with odds ratio’s ranging from approximately 1.3 to 2. Joint injury, high BMI and older age were related to risk of knee OA, consistent with previous studies. Conclusions. A newly developed measure of lifetime mechanical knee force from physical activity was employed to estimate the risk of self-reported, medically-diagnosed knee OA. While there are limitations, this paper suggests that high levels of total lifetime force (all domains combined), and occupational force in men and household force in women were risk factors for knee OA. 1. Introduction The promotion of physical activity (PA) is a major public health initiative in many countries due to its protective effect on numerous major health problems [1], including Canada and the US where public health bodies recommend 30 to 60 minutes of moderate-to-vigorous activities per day. However, there has long been a concern that such promotion could lead to a rise in hip and knee OA, the major public health problem in musculoskeletal medicine and a leading cause of chronic disability [2]. While there is a broad agreement that PA is an important determinant of joint health, it is unclear what amount and type of PA are beneficial or pose a risk. In short, despite numerous studies, the association between PA and joint health is complex and poorly understood. While different study designs, case definitions, sampling frames, and size play a role, the wide variation in how PA is defined is the most probable reason for the uncertainty. There is a lack of valid, reliable, and standardized instruments across studies, substantial measurement error, variation in the period and nature of PA measured, and failure to measure the most relevant aspect of PA-joint load [3]. Where accurate and precise measures are available, they are impractical for use in
References
[1]
D. M. Urquhart, J. F. L. Tobing, F. S. Hanna et al., “What is the effect of physical activity on the knee joint?A systematic review,” Medicine and Science in Sports and Exercise, vol. 43, no. 3, pp. 432–442, 2011.
[2]
A. A. Guccione, D. T. Felson, J. J. Anderson et al., “The effects of specific medical conditions on the functional limitations of elders in the Framingham study,” American Journal of Public Health, vol. 84, no. 3, pp. 351–358, 1994.
[3]
C. J. Caspersen, “Physical activity epidemiology: concepts, methods, and applications to exercise science,” Exercise and Sport Sciences Reviews, vol. 17, pp. 423–473, 1989.
[4]
C. R. Ratzlaff, G. Steininger, P. Doerfling et al., “Influence of lifetime hip joint force on the risk of self-reported hip osteoarthritis: a community-based cohort study,” Osteoarthritis and Cartilage, vol. 19, no. 4, pp. 389–398, 2011.
[5]
C. R. Ratzlaff, P. Doerfling, G. Steininger et al., “Lifetime trajectory of physical activity according to energy expenditure and joint force,” Arthritis Care and Research, vol. 62, no. 10, pp. 1452–1459, 2010.
[6]
P. Doerfling, J. A. Kopec, M. H. Liang, and J. M. Esdaile, “The effect of cash lottery on response rates to an online health survey among members of the canadian association of retired persons: a randomized experiment,” Canadian Journal of Public Health, vol. 101, no. 3, pp. 251–254, 2010.
[7]
M. A. De Vera, C. Ratzlaff, P. Doerfling, and J. Kopec, “Reliability and validity of an internet-based questionnaire measuring lifetime physical activity,” American Journal of Epidemiology, vol. 172, no. 10, pp. 1190–1198, 2010.
[8]
C. M. Friedenreich, K. S. Courneya, and H. E. Bryant, “The lifetime total physical activity questionnaire: development and reliability,” Medicine and Science in Sports and Exercise, vol. 30, no. 2, pp. 266–274, 1998.
[9]
C. M. Friedenreich, K. S. Courneya, H. K. Neilson et al., “Reliability and validity of the past year total physical activity questionnaire,” American Journal of Epidemiology, vol. 163, no. 10, pp. 959–970, 2006.
[10]
A. Vuillemin, F. Guillemin, G. Denis, J. Huot, and C. Jeandel, “A computer-assisted assessment of lifetime physical activity: reliability and validity of the QUANTAP software,” Revue d'Epidemiologie et de Sante Publique, vol. 48, no. 2, pp. 157–167, 2000.
[11]
R. M. Merrill and J. S. Richardson, “Validity of self-reported height, weight, and body mass index: findings from the National Health and Nutrition Examination Survey, 2001–2006,” Preventing Chronic Disease, vol. 6, no. 4, article A121, 2009.
[12]
D. D. Anderson, B. M. Hillberry, D. Teegarden, W. R. Proulx, C. M. Weaver, and T. Yoshikawa, “Biomechanical analysis of an exercise program for forces and stresses in the hip joint and femoral neck,” Journal of Applied Biomechanics, vol. 12, no. 3, pp. 292–312, 1996.
[13]
G. M. Kotzar, D. T. Davy, V. M. Goldberg et al., “Telemeterized in vivo hip joint force data: a report on two patients after total hip surgery,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 621–633, 1991.
[14]
G. M. Kotzar, D. T. Davy, J. Berilla, and V. M. Goldberg, “Torsional loads in the early postoperative period following total hip replacement,” Journal of Orthopaedic Research, vol. 13, no. 6, pp. 945–955, 1995.
[15]
S. Park, D. E. Krebs, and R. W. Mann, “Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation,” Gait and Posture, vol. 10, no. 3, pp. 211–222, 1999.
[16]
W. A. Hodge, R. S. Fijan, and K. L. Carlson, “Contact pressures in the human hip joint measured in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 9, pp. 2879–2883, 1986.
[17]
D. T. Davy, G. M. Kotzar, R. H. Brown et al., “Telemetric force measurements across the hip after total arthroplasty,” Journal of Bone and Joint Surgery A, vol. 70, no. 1, pp. 45–50, 1988.
[18]
R. A. Brand, D. R. Pedersen, D. T. Davy, G. M. Kotzar, K. G. Heiple, and V. M. Goldberg, “Comparison of hip force calculations and measurements in the same patient,” Journal of Arthroplasty, vol. 9, no. 1, pp. 45–51, 1994.
[19]
B. W. Stansfield, A. C. Nicol, J. P. Paul, I. G. Kelly, F. Graichen, and G. Bergmann, “Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb,” Journal of Biomechanics, vol. 36, no. 7, pp. 929–936, 2003.
[20]
W. R. Taylor, M. O. Heller, G. Bergmann, and G. N. Duda, “Tibio-femoral loading during human gait and stair climbing,” Journal of Orthopaedic Research, vol. 22, no. 3, pp. 625–632, 2004.
[21]
G. Bergmann, G. Deuretzbacher, M. Heller et al., “Hip contact forces and gait patterns from routine activities,” Journal of Biomechanics, vol. 34, no. 7, pp. 859–871, 2001.
[22]
G. Bergmann, F. Graichen, and A. Rohlmann, “Hip joint loading during walking and running, measured in two patients,” Journal of Biomechanics, vol. 26, no. 8, pp. 969–990, 1993.
[23]
E. B. Simonsen, P. Dyhre-Poulsen, M. Voigt, P. Aagaard, G. Sjogaard, and F. Bojsen-Moller, “Bone-on-bone forces during loaded and unloaded walking,” Acta Anatomica, vol. 152, no. 2, pp. 133–142, 1995.
[24]
A. J. van den Bogert, L. Read, and B. M. Nigg, “An analysis of hip joint loading during walking, running, and skiing,” Medicine and Science in Sports and Exercise, vol. 31, no. 1, pp. 131–142, 1999.
[25]
G. Nemeth, J. Ekholm, and U. P. Arborelius, “Hip joint load and muscular activation during rising exercises,” Scandinavian Journal of Rehabilitation Medicine, vol. 16, no. 3, pp. 93–102, 1984.
[26]
G. Nemeth, J. Ekholm, and U. P. Arborelius, “Hip load moments and muscular activity during lifting,” Scandinavian Journal of Rehabilitation Medicine, vol. 16, no. 3, pp. 103–111, 1984.
[27]
G. Bergmann, F. Graichen, and A. Rohlmann, “Hip joint contact forces during stumbling,” Langenbeck's Archives of Surgery, vol. 389, no. 1, pp. 53–59, 2004.
[28]
G. Bergmann, F. Graichen, A. Rohlmann, and H. Linke, “Hip joint forces during load carrying,” Clinical Orthopaedics and Related Research, no. 335, pp. 190–201, 1997.
[29]
M. Kuster, S. Sakurai, and G. A. Wood, “Kinematic and kinetic comparison of downhill and level walking,” Clinical Biomechanics, vol. 10, no. 2, pp. 79–84, 1995.
[30]
S. J. G. Taylor and P. S. Walker, “Forces and moments telemetered from two distal femoral replacements during various activities,” Journal of Biomechanics, vol. 34, no. 7, pp. 839–848, 2001.
[31]
K. R. Kaufman, K. N. An, W. J. Litchy, B. F. Morrey, and E. Y. S. Chao, “Dynamic joint forces during knee isokinetic exercise,” American Journal of Sports Medicine, vol. 19, no. 3, pp. 305–316, 1991.
[32]
H. Rohrle, R. Scholten, and C. Sigolotto, “Joint forces in the human pelvis-leg skeleton during walking,” Journal of Biomechanics, vol. 17, no. 6, pp. 409–424, 1984.
[33]
R. Nisell, M. O. Ericson, G. Nemeth, and J. Ekholm, “Tibiofemoral joint forces during isokinetic knee extension,” American Journal of Sports Medicine, vol. 17, no. 1, pp. 49–54, 1989.
[34]
M. O. Ericson, A. Bratt, and R. Nisell, “Load moments about the hip and knee joints during ergometer cycling,” Scandinavian Journal of Rehabilitation Medicine, vol. 18, no. 4, pp. 165–172, 1986.
[35]
V. C. Mow and W. C. Hayes, Eds., Basic Orthopaedic Biomechanics, Raven Press, New York, NY, USA, 3rd edition, 2005.
[36]
N. J. Dahlkvist, P. Mayo, and B. B. Seedhom, “Forces during squatting and rising from a deep squat,” Engineering in Medicine, vol. 11, no. 2, pp. 69–76, 1982.
[37]
S. J. G. Taylor, P. S. Walker, J. S. Perry, S. R. Cannon, and R. Woledge, “The forces in the distal femur and the knee during walking and other activities measured by telemetry,” Journal of Arthroplasty, vol. 13, no. 4, pp. 428–437, 1998.
[38]
R. F. Escamilla, “Knee biomechanics of the dynamic squat exercise,” Medicine and Science in Sports and Exercise, vol. 33, no. 1, pp. 127–141, 2001.
[39]
D. A. Winter, Biomechanics of Human Movement, Wiley, New York, NY, USA, 1990.
[40]
M. S. Kuster, G. A. Wood, G. W. Stachowiak, and A. G?chter, “Joint load considerations in total knee replacement,” Journal of Bone and Joint Surgery B, vol. 79, no. 1, pp. 109–113, 1997.
[41]
C. R. Ratzlaff, M. Koehoorn, J. Cibere, and J. Kopec, “Clinical validation of an internet-based questionnaire for ascertaining cases of hip and knee osteoarthritis,” Arthritis & Rheumatism, vol. 62, supplement 10, p. S2093, 2010.
[42]
R. Altman, G. Alarcon, D. Appelrouth et al., “The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip,” Arthritis & Rheumatism, vol. 34, no. 5, pp. 505–514, 1991.
[43]
J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[44]
Y. Cheng, C. A. Macera, D. R. Davis, B. E. Ainsworth, P. J. Troped, and S. N. Blair, “Physical activity and self-reported, physician-diagnosed osteoarthritis: is physical activity a risk factor?” Journal of Clinical Epidemiology, vol. 53, no. 3, pp. 315–322, 2000.
[45]
L. M. March, J. M. Schwarz, B. H. Carfrae, and E. Bagge, “Clinical validation of self-reported osteoarthritis,” Osteoarthritis and Cartilage, vol. 6, no. 2, pp. 87–93, 1998.
[46]
C. E. I. Szoeke, L. Dennerstein, A. E. Wluka et al., “Physician diagnosed arthritis, reported arthritis and radiological non-axial osteoarthritis,” Osteoarthritis and Cartilage, vol. 16, no. 7, pp. 846–850, 2008.
[47]
D. T. Felson, R. C. Lawrence, P. A. Dieppe et al., “Osteoarthritis: new insights—part 1: the disease and its risk factors,” Annals of Internal Medicine, vol. 133, no. 8, pp. 635–646, 2000.
[48]
Y. Zhang and J. M. Jordan, “Epidemiology of osteoarthritis,” Clinics in Geriatric Medicine, vol. 26, no. 3, pp. 355–369, 2010.
[49]
D. T. Felson, J. J. Anderson, A. Naimark, A. M. Walker, and R. F. Meenan, “Obesity and knee osteoarthritis. The Framingham study,” Annals of Internal Medicine, vol. 109, no. 1, pp. 18–24, 1988.
[50]
T. M. Griffin and F. Guilak, “Why is obesity associated with osteoarthritis? Insights from mouse models of obesity,” Biorheology, vol. 45, no. 3-4, pp. 387–398, 2008.
[51]
L. Sharma, D. Kapoor, and S. Issa, “Epidemiology of osteoarthritis: an update,” Current Opinion in Rheumatology, vol. 18, no. 2, pp. 147–156, 2006.
[52]
R. L. Imeokparia, J. P. Barrett, M. I. Arrieta et al., “Physical activity as a risk factor for osteoarthritis of the knee,” Annals of Epidemiology, vol. 4, no. 3, pp. 221–230, 1994.
[53]
E. C. Lau, C. Cooper, D. Lam, V. N. H. Chan, K. K. Tsang, and A. Sham, “Factors associated with osteoarthritis of the hip and knee in Hong Kong Chinese: obesity, joint injury, and occupational activities,” American Journal of Epidemiology, vol. 152, no. 9, pp. 855–862, 2000.
[54]
U. M. Kujala, J. Kettunen, H. Paananen et al., “Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters,” Arthritis & Rheumatism, vol. 38, no. 4, pp. 539–546, 1995.
[55]
A. J. Sutton, K. R. Muir, S. Mockett, and P. Fentem, “A case-control study to investigate the relation between low and moderate levels of physical activity and osteoarthritis of the knee using data collected as part of the Allied Dunbar National Fitness Survey,” Annals of the Rheumatic Diseases, vol. 60, no. 8, pp. 756–764, 2001.
[56]
L. Q. Rogers, C. A. Macera, J. M. Hootman, B. Ainsworth, and S. N. Blair, “The association between joint stress from physical activity and self-reported osteoarthritis: an analysis of the Cooper clinic data,” Osteoarthritis and Cartilage, vol. 10, no. 8, pp. 617–622, 2002.
[57]
J. M. Hootman, C. A. Macera, C. G. Helmick, and S. N. Blair, “Influence of physical activity-related joint stress on the risk of self-reported hip/knee osteoarthritis: a new method to quantify physical activity,” Preventive Medicine, vol. 36, no. 5, pp. 636–644, 2003.
[58]
E. Vingard, L. Alfredsson, I. Goldie, and C. Hogstedt, “Sports and osteoarthrosis of the hip. An epidemiologic study,” American Journal of Sports Medicine, vol. 21, no. 2, pp. 195–200, 1993.
[59]
E. Vingard, C. Hogstedt, L. Alfredsson, E. Fellenius, I. Goldie, and M. Koster, “Coxarthrosis and physical work load,” Scandinavian Journal of Work, Environment and Health, vol. 17, no. 2, pp. 104–109, 1991.
[60]
C. Cooper, H. Inskip, P. Croft et al., “Individual risk factors for hip osteoarthritis: obesity, hip injury, and physical activity,” American Journal of Epidemiology, vol. 147, no. 6, pp. 516–522, 1998.
[61]
T. D. Spector, P. A. Harris, D. J. Hart et al., “Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls,” Arthritis & Rheumatism, vol. 39, no. 6, pp. 988–995, 1996.
[62]
A. T. Toivanen, M. Heli?vaara, O. Impivaara et al., “Obesity, physically demanding work and traumatic knee injury are major risk factors for knee osteoarthritis-a population-based study with a follow-up of 22 years,” Rheumatology, vol. 49, no. 2, pp. 308–314, 2009.
[63]
L. M. Verweij, N. M. van Schoor, D. J. H. Deeg, J. Dekker, and M. Visser, “Physical activity and incident clinical knee osteoarthritis in older adults,” Arthritis Care and Research, vol. 61, no. 2, pp. 152–157, 2009.
[64]
Y. Wang, J. A. Simpson, A. E. Wluka et al., “Is physical activity a risk factor for primary knee or hip replacement due to osteoarthritis? A prospective cohort study,” Journal of Rheumatology, vol. 38, no. 2, pp. 350–357, 2011.
[65]
D. T. Felson, Y. Zhang, M. T. Hannan et al., “Risk factors for incident radiographic knee osteoarthritis in the elderly,” Arthritis & Rheumatism, vol. 40, no. 4, pp. 728–733, 1997.
[66]
D. T. Felson, M. T. Hannan, A. Naimark et al., “Occupational physical demands, knee bending, and knee osteoarthritis: results from the Framingham study,” Journal of Rheumatology, vol. 18, no. 10, pp. 1587–1592, 1991.
[67]
T. E. McAlindon, P. W. F. Wilson, P. Aliabadi, B. Weissman, and D. T. Felson, “Level of physical activity and the risk of radiographic and symptomatic knee osteoarthritis in the elderly: the Framingham study,” American Journal of Medicine, vol. 106, no. 2, pp. 151–157, 1999.
[68]
M. T. Hannan, D. T. Felson, J. J. Anderson, and A. Naimark, “Habitual physical activity is not associated with knee osteoarthritis: the Framingham study,” Journal of Rheumatology, vol. 20, no. 4, pp. 704–709, 1993.
[69]
D. J. Hart, D. V. Doyle, and T. D. Spector, “Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women: the Chingford study,” Arthritis & Rheumatism, vol. 42, no. 1, pp. 17–24, 1999.
[70]
D. T. Felson, J. Nui, M. Clancy, B. Sack, P. Aliabadi, and Y. Zhang, “Effect of recreational physical activities on the development of knee osteoarthritis in older adults of different weights: the Framingham study,” Arthritis Care and Research, vol. 57, no. 1, pp. 6–12, 2007.
[71]
E. F. Chakravarty, H. B. Hubert, V. B. Lingala, E. Zatarain, and J. F. Fries, “Long distance running and knee osteoarthritis,” American Journal of Preventive Medicine, vol. 35, no. 2, pp. 133–138, 2008.
[72]
T. L. Racunica, A. J. Teichtahl, Y. Wang et al., “Effect of physical activity on articular knee joint structures in community-based adults,” Arthritis Care and Research, vol. 57, no. 7, pp. 1261–1268, 2007.
[73]
E. W. Karlson, L. A. Mandl, G. N. Aweh, O. Sangha, M. H. Liang, and F. Grodstein, “Total hip replacement due to osteoarthritis: the importance of age, obesity, and other modifiable risk factors,” American Journal of Medicine, vol. 114, no. 2, pp. 93–98, 2003.
[74]
R. S. Panush, C. S. Hanson, J. R. Caldwell, S. Longley, J. Stork, and R. Thoburn, “Is running associated with osteoarthritis? An eight-year follow-up study,” Journal of Clinical Rheumatology, vol. 1, no. 1, pp. 35–39, 1995.
[75]
N. E. Lane, J. W. Oehlert, D. A. Bloch, and J. F. Fries, “The relationship of running to osteoarthritis of the knee and hip and bone mineral density of the lumbar spine: a 9 year longitudinal study,” Journal of Rheumatology, vol. 25, no. 2, pp. 334–341, 1998.
[76]
N. Thelin, S. Holmberg, and A. Thelin, “Knee injuries account for the sports-related increased risk of knee osteoarthritis,” Scandinavian Journal of Medicine and Science in Sports, vol. 16, no. 5, pp. 329–333, 2006.
[77]
J. A. Buckwalter and J. A. Martin, “Sports and osteoarthritis,” Current Opinion in Rheumatology, vol. 16, no. 5, pp. 634–639, 2004.
[78]
J. A. Buckwalter, “Sports, joint injury, and posttraumatic osteoarthritis,” Journal of Orthopaedic and Sports Physical Therapy, vol. 33, no. 10, pp. 578–588, 2003.
[79]
N. E. Lane and J. A. Buckwalter, “Exercise and osteoarthritis,” Current Opinion in Rheumatology, vol. 11, no. 5, pp. 413–416, 1999.
[80]
U. M. Kujala, J. Kaprio, and S. Sarna, “Osteoarthritis of weight bearing joints of low limbs in former elite male athletes,” British Medical Journal, vol. 308, no. 6923, pp. 231–234, 1994.
[81]
U. M. Kujala, P. Marti, J. Kaprio, M. Hernelahti, H. Tikkanen, and S. Sarna, “Occurrence of chronic disease in former top-level athletes: predominance of benefits, risks or selection effects?” Sports Medicine, vol. 33, no. 8, pp. 553–561, 2003.
[82]
J. M. Jordan, C. G. Helmick, J. B. Renner et al., “Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis project,” Journal of Rheumatology, vol. 34, no. 1, pp. 172–180, 2007.
[83]
C. F. Dillon, E. K. Rasch, Q. Gu, and R. Hirsch, “Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991–94,” Journal of Rheumatology, vol. 33, no. 11, pp. 2271–2279, 2006.
[84]
D. T. Felson, A. Naimark, and J. Anderson, “The prevalence of knee osteoarthritis in the elderly. the Framingham Osteoarthritis study,” Arthritis & Rheumatism, vol. 30, no. 8, pp. 914–918, 1987.
[85]
B. E. Ainsworth, “Issues in the assessment of physical activity in women,” Research Quarterly for Exercise and Sport, vol. 71, supplement 2, pp. S37–S42, 2000.
[86]
A. E. Cust, B. K. Armstrong, C. M. Friedenreich, N. Slimani, and A. Bauman, “Physical activity and endometrial cancer risk: a review of the current evidence, biologic mechanisms and the quality of physical activity assessment methods,” Cancer Causes and Control, vol. 18, no. 3, pp. 243–258, 2007.
[87]
B. E. Ainsworth, “Challenges in measuring physical activity in women,” Exercise and Sport Sciences Reviews, vol. 28, no. 2, pp. 93–96, 2000.
[88]
R. R. Pate, M. Pratt, S. N. Blair et al., “Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine,” Journal of the American Medical Association, vol. 273, no. 5, pp. 402–407, 1995.
[89]
H. Sandmark, C. Hogstedt, and E. Ving?rd, “Primary osteoarthrosis of the knee in men and women as a result of lifelong physical load from work,” Scandinavian Journal of Work, Environment and Health, vol. 26, no. 1, pp. 20–25, 2000.
[90]
I. Weller and P. Corey, “The impact of excluding non-leisure energy expenditure on the relation between physical activity and mortality in women,” Epidemiology, vol. 9, no. 6, pp. 632–635, 1998.
[91]
C. M. Friedenreich, H. E. Bryant, and K. S. Courneya, “Case-control study of lifetime physical activity and breast cancer risk,” American Journal of Epidemiology, vol. 154, no. 4, pp. 336–347, 2001.
[92]
A. M. Lievense, S. M. A. Bierma-Zeinstra, A. P. Verhagen, R. M. D. Bernsen, J. A. N. Verhaar, and B. W. Koes, “Influence of sporting activities on the development of osteoarthritis of the hip: a systematic review,” Arthritis Care and Research, vol. 49, no. 2, pp. 228–236, 2003.
[93]
A. Lievense, S. Bierma-Zeinstra, A. Verhagen, J. Verhaar, and B. Koes, “Influence of work on the development of osteoarthritis of the hip: a systematic review,” Journal of Rheumatology, vol. 28, no. 11, pp. 2520–2528, 2001.
[94]
E. Vignon, J. P. Valat, M. Rossignol et al., “Osteoarthritis of the knee and hip and activity: a systematic international review and synthesis (OASIS),” Joint Bone Spine, vol. 73, no. 4, pp. 442–455, 2006.
[95]
A. B. HILL, “The environment and disease: association or causation?” Proceedings of the Royal Society of Medicine, vol. 58, pp. 295–300, 1965.
[96]
A. M. Kriska, W. C. Knowler, R. E. LaPorte et al., “Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians,” Diabetes Care, vol. 13, no. 4, pp. 401–411, 1990.
[97]
C. W. Wu, M. R. Morrell, E. Heinze et al., “Validation of American College of Rheumatology classification criteria for knee osteoarthritis using arthroscopically defined cartilage damage scores,” Seminars in Arthritis & Rheumatism, vol. 35, no. 3, pp. 197–201, 2005.
[98]
J. Bedson and P. R. Croft, “The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature,” BMC Musculoskeletal Disorders, vol. 9, article 116, 2008.
[99]
P. Ritter, K. Lorig, D. Laurent, and K. Matthews, “Internet versus mailed questionnaires: a randomized comparison,” Journal of Medical Internet Research, vol. 6, no. 3, p. e29, 2004.
[100]
M. A. Stopponi, G. L. Alexander, J. B. McClure et al., “Recruitment to a randomized web-based nutritional intervention trial: characteristics of participants compared to non-participants,” Journal of Medical Internet Research, vol. 11, no. 3, p. e38, 2009.
[101]
G. Eysenbach, “Improving the quality of Web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES),” Journal of Medical Internet Research, vol. 6, no. 3, p. e34, 2004.
[102]
K. F. Janz, “Physical activity in epidemiology: moving from questionnaire to objective measurement,” British Journal of Sports Medicine, vol. 40, no. 3, pp. 191–192, 2006.
[103]
A. M. Kriska, R. B. Sandler, J. A. Cauley, R. E. LaPorte, D. L. Hom, and G. Pambianco, “The assessment of historical physical activity and its relation to adult bone parameters,” American Journal of Epidemiology, vol. 127, no. 5, pp. 1053–1063, 1988.
[104]
R. J. Shephard, “Limits to the measurement of habitual physical activity by questionnaires,” British Journal of Sports Medicine, vol. 37, no. 3, pp. 197–206, 2003.
[105]
C. M. Friedenreich, “Improving long-term recall in epidemiologic studies,” Epidemiology, vol. 5, no. 1, pp. 1–4, 1994.
[106]
L. Chasan-Taber, J. Bianca Erickson, P. C. Nasca, S. Chasan-Taber, and P. S. Freedson, “Validity and reproducibility of a physical activity questionnaire in women,” Medicine and Science in Sports and Exercise, vol. 34, no. 6, pp. 987–992, 2002.
[107]
G. Godin, J. Jobin, and J. Bouillon, “Assessment of leisure time exercise behavior by self-report: a concurrent validity study,” Canadian Journal of Public Health, vol. 77, no. 5, pp. 359–362, 1986.
[108]
F. Guilak, L. A. Setton, and V. B. Kraus, “Structure and function of articular cartilage,” in Principles and Practice of Orthopaedic Sports MEdicine, W. E. J. Garrett, K. P. Speer, and D. T. Kirkendall, Eds., pp. 53–73, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2000.
[109]
K. D. Brandt, P. Dieppe, and E. L. Radin, “Etiopathogenesis of osteoarthritis,” Rheumatic Disease Clinics of North America, vol. 34, no. 3, pp. 531–559, 2008.
[110]
T. M. Griffin and F. Guilak, “The role of mechanical loading in the onset and progression of osteoarthritis,” Exercise and Sport Sciences Reviews, vol. 33, no. 4, pp. 195–200, 2005.
[111]
G. Pap, R. Eberhardt, I. Stürmer et al., “Development of osteoarthritis in the knee joints of Wistar rats after strenuous running exercise in a running wheel by intracranial self-stimulation,” Pathology Research and Practice, vol. 194, no. 1, pp. 41–47, 1998.
[112]
C. T. Chen, N. Burton-Wurster, G. Lust, R. A. Bank, and J. M. Tekoppele, “Compositional and metabolic changes in damaged cartilage are peak- stress, stress-rate, and loading-duration dependent,” Journal of Orthopaedic Research, vol. 17, no. 6, pp. 870–879, 1999.