Interstitial lung disease (ILD) is a major cause of morbidity and mortality in patients with systemic sclerosis (SSc). Although a large proportion of SSc patients have only limited interstitial involvement with an indolent course, in a significant minority ILD is progressive, requiring prompt treatment and careful monitoring. One of the main challenges for the clinician treating this highly variable disease is the early identification of patients at risk of progressive ILD, while avoiding potentially toxic treatments in those whose disease is inherently stable. Easily available and repeatable biomarkers that allow estimation of the risk of ILD progression and early response to treatment are highly desirable. In this paper, we review the evidence for circulating biomarkers with potential roles in diagnosis, monitoring of disease activity, or determining prognosis. Peripheral blood biomarkers offer the advantages of being readily obtained, non-invasive, and serially monitored. Several possible candidates have emerged from studies performed so far, including SP-D, KL-6, and CCL18. Presently however, there are few prospective studies evaluating the predictive ability of prospective biomarkers after adjustment for disease severity. Future carefully designed, prospective studies of well characterised patients with ILD, with optimal definition of disease severity and outcome measures are needed. 1. Introduction Systemic sclerosis (SSc) is a multisystem, autoimmune connective tissue disease, characterised by excessive extracellular matrix deposition, with remarkable heterogeneity in organ involvement pattern and prognosis. Pulmonary involvement, due to pulmonary fibrosis or pulmonary hypertension, is the leading cause of mortality [1, 2]. The pathogenesis of pulmonary fibrosis in SSc involves a complex combination of epithelial and endothelial cell injury with inflammatory and immune activation. Occurring in response to unknown initiating factors, the interaction between vascular, epithelial, and immune dysfunction leads to dysregulated fibroblast activation and increased extracellular matrix production [3]. This paper will focus on the circulating biomarkers for SSc-associated interstitial lung disease (SSc-ILD), as summarised in Figure 1. Figure 1: Potential biomarkers in SSc-ILD. A degree of interstitial involvement is present in the majority of patients with SSc, although severity of lung disease at presentation and subsequent longitudinal behaviour are highly variable. In view of the marked variability in the natural history of SSc-ILD, markers of the
References
[1]
V. D. Steen and T. A. Medsger Jr., “Changes in causes of death in systemic sclerosis, 1972–2002,” Annals of the Rheumatic Diseases, vol. 66, no. 7, pp. 940–944, 2007.
[2]
A. J. Tyndall, B. Bannert, M. Vonk et al., “Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database,” Annals of the Rheumatic Diseases, vol. 69, no. 10, pp. 1809–1815, 2010.
[3]
E. A. Renzoni, “Interstitial lung disease in systemic sclerosis,” Monaldi Archives for Chest Disease, vol. 67, no. 4, pp. 217–228, 2007.
[4]
V. D. Steen and T. A. Medsger Jr., “Severe organ involvement in systemic sclerosis with diffuse scleroderma,” Arthritis and Rheumatism, vol. 43, no. 11, pp. 2437–2444, 2000.
[5]
C. Morgan, C. Knight, M. Lunt, C. M. Black, and A. J. Silman, “Predictors of end stage lung disease in a cohort of patients with scleroderma,” Annals of the Rheumatic Diseases, vol. 62, no. 2, pp. 146–150, 2003.
[6]
A. U. Wells, D. M. Hansell, M. B. Rubens et al., “Fibrosing alveolitis in systemic sclerosis: indices of lung function in relation to extent of disease on computed tomography,” Arthritis and Rheumatism, vol. 40, no. 7, pp. 1229–1236, 1997.
[7]
D. P. Tashkin, R. Elashoff, P. J. Clements et al., “Cyclophosphamide versus placebo in scleroderma lung disease,” The New England Journal of Medicine, vol. 354, no. 25, pp. 2655–2666, 2006.
[8]
N. S. L. Goh, S. R. Desai, S. Veeraraghavan et al., “Interstitial lung disease in systemic sclerosis: a simple staging system,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 11, pp. 1248–1254, 2008.
[9]
N. S. L. Goh, S. Veeraraghavan, S. R. Desai et al., “Bronchoalveolar lavage cellular profiles in patients with systemic sclerosis-associated interstitial lung disease are not predictive of disease progression,” Arthritis and Rheumatism, vol. 56, no. 6, pp. 2005–2012, 2007.
[10]
C. Strange and J. R. Seibold, “Scleroderma lung disease: ‘If you don't know where you are going, any road will take you there’,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 11, pp. 1178–1179, 2008.
[11]
D. Bouros, A. U. Wells, A. G. Nicholson et al., “Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 12, pp. 1581–1586, 2002.
[12]
P. J. Clements, M. D. Roth, R. Elashoff et al., “Scleroderma lung study (SLS): differences in the presentation and course of patients with limited versus diffuse systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 66, no. 12, pp. 1641–1647, 2007.
[13]
D. Khanna, K. K. Brown, P. J. Clements et al., “Systemic sclerosis-associated interstitial lung disease—proposed recommendations for future randomised clinical trials,” Clinical and Experimental Rheumatology, vol. 28, no. 2, supplement 58, pp. S55–S62, 2010.
[14]
A. De Lauretis, S. Veeraraghavan, and E. Renzoni, “Connective tissue disease-associated interstitial lung disease: how does it differ from IPF? How should the clinical approach differ?” Chronic Respiratory Disease, vol. 8, no. 1, pp. 53–82, 2011.
[15]
F. N. Hant and R. M. Silver, “Biomarkers of scleroderma lung disease: recent progress,” Current Rheumatology Reports, vol. 13, no. 1, pp. 44–50, 2011.
[16]
V. D. Steen, D. L. Powell, and T. A. Medsger Jr., “Clinical correlations and prognosis based on serum autoantibodies in patients with systemic sclerosis,” Arthritis and Rheumatism, vol. 31, no. 2, pp. 196–203, 1988.
[17]
Y. Okano, V. D. Steen, and T. A. Medsger Jr., “Autoantibody reactive with RNA polymerase III in systemic sclerosis,” Annals of Internal Medicine, vol. 119, no. 10, pp. 1005–1013, 1993.
[18]
V. Steen, “Predictors of end stage lung disease in systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 62, no. 2, pp. 97–99, 2003.
[19]
N. K. Harrison, A. R. Myers, B. Corrin et al., “Structural features of interstitial lung disease in systemic sclerosis,” American Review of Respiratory Disease, vol. 144, no. 3, pp. 706–713, 1991.
[20]
A. U. Wells, D. M. Hansell, N. K. Harrison, R. Lawrence, C. M. Black, and R. M. Du Bois, “Clearance of inhaled 99mTc-DTPA predicts the clinical course of fibrosing alveolitis,” European Respiratory Journal, vol. 6, no. 6, pp. 797–802, 1993.
[21]
N. S. L. Goh, S. R. Desai, C. Anagnostopoulos et al., “Increased epithelial permeability in pulmonary fibrosis in relation to disease progression,” European Respiratory Journal, vol. 38, no. 1, pp. 184–190, 2011.
[22]
A. M. Pastva, J. R. Wright, and K. L. Williams, “Immunomodulatory roles of surfactant proteins A and D: implications in lung disease,” Proceedings of the American Thoracic Society, vol. 4, no. 3, pp. 252–257, 2007.
[23]
H. Takahashi, Y. Kuroki, H. Tanaka et al., “Serum levels of surfactant proteins A and D are useful biomarkers for interstitial lung disease in patients with progressive systemic sclerosis,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 1, pp. 258–263, 2000.
[24]
Y. Asano, H. Ihn, K. Yamane et al., “Clinical significance of surfactant protein D as a serum marker for evaluating pulmonary fibrosis in patients with systemic sclerosis,” Arthritis and Rheumatism, vol. 44, no. 6, pp. 1363–1369, 2001.
[25]
K. Yanaba, M. Hasegawa, K. Takehara, and S. Sato, “Comparative study of serum surfactant protein-D and KL-6 concentrations in patients with systemic sclerosis as markers for monitoring the activity of pulmonary fibrosis,” Journal of Rheumatology, vol. 31, no. 6, pp. 1112–1120, 2004.
[26]
F. N. Hant, A. Ludwicka-Bradley, H. J. Wang et al., “Surfactant protein D and KL-6 as serum biomarkers of interstitial lung disease in patients with scleroderma,” Journal of Rheumatology, vol. 36, no. 4, pp. 773–780, 2009.
[27]
N. Kohno, S. Kyoizumi, Y. Awaya, H. Fukuhara, M. Yamakido, and M. Akiyama, “New serum indicator of interstitial pneumonitis activity. Sialylated carbohydrate antigen KL-6,” Chest, vol. 96, no. 1, pp. 68–73, 1989.
[28]
S. Ohshimo, A. Yokoyama, N. Hattori, N. Ishikawa, Y. Hirasawa, and N. Kohno, “KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts,” Biochemical and Biophysical Research Communications, vol. 338, no. 4, pp. 1845–1852, 2005.
[29]
N. Ishikawa, N. Hattori, A. Yokoyama, and N. Kohno, “Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases,” Respiratory Investigation, vol. 50, no. 1, pp. 3–13, 2012.
[30]
K. Yamane, H. Ihn, M. Kubo et al., “Serum levels of KL-6 as a useful marker for evaluating pulmonary fibrosis in patients with systemic sclerosis,” Journal of Rheumatology, vol. 27, no. 4, pp. 930–934, 2000.
[31]
S. Doishita, S. Inokuma, H. Asashima et al., “Serum KL-6 level as an indicator of active or inactive interstitial pneumonitis associated with connective tissue diseases,” Internal Medicine, vol. 50, no. 23, pp. 2889–2892, 2011.
[32]
F. Bonella, A. Volpe, P. Caramaschi et al., “Surfactant protein D and KL-6 serum levels in systemic sclerosis: correlation with lung and systemic involvement,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 28, no. 1, pp. 27–33, 2011.
[33]
K. Yanaba, M. Hasegawa, Y. Hamaguchi, M. Fujimoto, K. Takehara, and S. Sato, “Longitudinal analysis of serum KL-6 levels in patients with systemic sclerosis: association with the activity of pulmonary fibrosis,” Clinical and Experimental Rheumatology, vol. 21, no. 4, pp. 429–436, 2003.
[34]
M. Okada, K. Suzuki, M. Matsumoto et al., “Intermittent intravenous cyclophosphamide pulse therapy for the treatment of active interstitial lung disease associated with collagen vascular diseases,” Modern Rheumatology, vol. 17, no. 2, pp. 131–136, 2007.
[35]
H. Satoh, K. Kurishima, H. Ishikawa, and M. Ohtsuka, “Increased levels of KL-6 and subsequent mortality in patients with interstitial lung diseases,” Journal of Internal Medicine, vol. 260, no. 5, pp. 429–434, 2006.
[36]
A. Prasse, D. V. Pechkovsky, G. B. Toews et al., “CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis,” Arthritis and Rheumatism, vol. 56, no. 5, pp. 1685–1693, 2007.
[37]
S. P. Atamas, I. G. Luzina, J. Choi et al., “Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 6, pp. 743–749, 2003.
[38]
A. Prasse, D. V. Pechkovsky, G. B. Toews et al., “A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 7, pp. 781–792, 2006.
[39]
M. Kodera, M. Hasegawa, K. Komura, K. Yanaba, K. Takehara, and S. Sato, “Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis,” Arthritis and Rheumatism, vol. 52, no. 9, pp. 2889–2896, 2005.
[40]
K. P. Tiev, T. Hua-Huy, A. Kettaneh et al., “Serum CC chemokine ligand-18 predicts lung disease worsening in systemic sclerosis,” European Respiratory Journal, vol. 38, no. 6, pp. 1355–1360, 2011.
[41]
A. Prasse, C. Probst, E. Bargagli et al., “Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 8, pp. 717–723, 2009.
[42]
M. T. Carulli, V. H. Ong, M. Ponticos et al., “Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation,” Arthritis and Rheumatism, vol. 52, no. 12, pp. 3772–3782, 2005.
[43]
L. Gu, S. Tseng, R. M. Horner, C. Tam, M. Loda, and B. J. Rollins, “Control of T(H)2 polarization by the chemokine monocyte chemoattractant protein-1,” Nature, vol. 404, no. 6776, pp. 407–411, 2000.
[44]
M. T. Carulli, C. Handler, J. G. Coghlan, C. M. Black, and C. P. Denton, “Can CCL2 serum levels be used in risk stratification or to monitor treatment response in systemic sclerosis?” Annals of the Rheumatic Diseases, vol. 67, no. 1, pp. 105–109, 2008.
[45]
M. Hasegawa, S. Sato, and K. Takehara, “Augmented production of chemokines (monocyte chemotactic protein-1 (MCP- 1), macrophage inflammatory protein-1α (MIP-1α) and MIP-1β) in patients with systemic sclerosis: MCP-1 and MIP-1α may be involved in the development of pulmonary fibrosis,” Clinical and Experimental Immunology, vol. 117, no. 1, pp. 159–165, 1999.
[46]
A. Antonelli, C. Ferri, P. Fallahi et al., “CXCL10 (α) and CCL2 (β) chemokines in systemic sclerosis—a longitudinal study,” Rheumatology, vol. 47, no. 1, pp. 45–49, 2008.
[47]
M. Hasegawa, M. Fujimoto, T. Matsushita, Y. Hamaguchi, K. Takehara, and S. Sato, “Serum chemokine and cytokine levels as indicators of disease activity in patients with systemic sclerosis,” Clinical Rheumatology, vol. 30, no. 2, pp. 231–237, 2011.
[48]
K. Schmidt, L. Martinez-Gamboa, S. Meier et al., “Bronchoalveoloar lavage fluid cytokines and chemokines as markers and predictors for the outcome of interstitial lung disease in systemic sclerosis patients,” Arthritis Research & Therapy, vol. 11, no. 4, article R111, 2009.
[49]
E. Y. Lee, Z. H. Lee, and Y. W. Song, “CXCL10 and autoimmune diseases,” Autoimmunity Reviews, vol. 8, no. 5, pp. 379–383, 2009.
[50]
H. Fujii, Y. Shimada, M. Hasegawa, K. Takehara, and S. Sato, “Serum levels of a Th1 chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC, are elevated in patients with systemic sclerosis,” Journal of Dermatological Science, vol. 35, no. 1, pp. 43–51, 2004.
[51]
D. Campioni, A. Lo Monaco, F. Lanza et al., “CXCR4pos circulating progenitor cells coexpressing monocytic and endothelial markers correlating with fibrotic clinical features are present in the peripheral blood of patients affected by systemic sclerosis,” Haematologica, vol. 93, no. 8, pp. 1233–1237, 2008.
[52]
E. Tourkina, M. Bonner, J. Oates et al., “Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide,” Fibrogenesis and Tissue Repair, vol. 4, no. 1, article 15, 2011.
[53]
S. Romagnani, “The Th1/Th2 paradigm,” Immunology Today, vol. 18, no. 6, pp. 263–266, 1997.
[54]
T. R. Mosmann and R. L. Coffman, “TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties,” Annual Review of Immunology, vol. 7, pp. 145–173, 1989.
[55]
T. A. Wynn, “Fibrotic disease and the T(H)1/T(H)2 paradigm,” Nature Reviews Immunology, vol. 4, no. 8, pp. 583–594, 2004.
[56]
F. Boin, U. De Fanis, S. J. Bartlett, F. M. Wigley, A. Rosen, and V. Casolaro, “T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease,” Arthritis and Rheumatism, vol. 58, no. 4, pp. 1165–1174, 2008.
[57]
S. P. Atamas, V. V. Yurovsky, R. Wise et al., “Production of type 2, cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis,” Arthritis and Rheumatism, vol. 42, no. 6, pp. 1168–1178, 1999.
[58]
E. Scala, S. Pallotta, A. Frezzolini et al., “Cytokine and chemokine levels in systemic sclerosis: relationship with cutaneous and internal organ involvement,” Clinical and Experimental Immunology, vol. 138, no. 3, pp. 540–546, 2004.
[59]
D. M. Wuttge, M. Wildt, P. Geborek, F. A. Wollheim, A. Scheja, and A. ?kesson, “Serum IL-15 in patients with early systemic sclerosis: a potential novel marker of lung disease,” Arthritis Research and Therapy, vol. 9, no. 5, article R85, 2007.
[60]
I. Gutcher, M. K. Donkor, Q. Ma, A. Y. Rudensky, R. A. Flavell, and M. O. Li, “Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation,” Immunity, vol. 34, no. 3, pp. 396–408, 2011.
[61]
K. Kurasawa, K. Hirose, H. Sano et al., “Increased interleukin-17 production in patients with systemic sclerosis,” Arthritis and Rheumatism, vol. 43, no. 11, pp. 2455–2463, 2000.
[62]
T. R. D. J. Radstake, L. van Bon, J. Broen et al., “The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFβ and IFNγ distinguishes SSc phenotypes,” PLoS ONE, vol. 4, no. 6, article e5903, 2009.
[63]
M. Murata, M. Fujimoto, T. Matsushita et al., “Clinical association of serum interleukin-17 levels in systemic sclerosis: is systemic sclerosis a Th17 disease?” Journal of Dermatological Science, vol. 50, no. 3, pp. 240–242, 2008.
[64]
P. Gourh, F. C. Arnett, S. Assassi et al., “Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations,” Arthritis Research and Therapy, vol. 11, no. 5, article R147, 2009.
[65]
K. Komura, M. Fujimoto, M. Hasegawa et al., “Increased serum interleukin 23 in patients with systemic sclerosis,” Journal of Rheumatology, vol. 35, no. 1, pp. 120–125, 2008.
[66]
W. Ouyang, J. K. Kolls, and Y. Zheng, “The biological functions of T helper 17 cell effector cytokines in inflammation,” Immunity, vol. 28, no. 4, pp. 454–467, 2008.
[67]
S. Trifari, C. D. Kaplan, E. H. Tran, N. K. Crellin, and H. Spits, “Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells,” Nature Immunology, vol. 10, no. 8, pp. 864–871, 2009.
[68]
M.-E. Truchetet, N. C. Brembilla, E. Montanari, Y. Allanore, and C. Chizzolini, “Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease,” Arthritis Research & Therapy, vol. 13, no. 5, article R166, 2011.
[69]
R. Lafyatis, C. O'Hara, C. A. Feghali-Bostwick, and E. Matteson, “B cell infiltration in systemic sclerosis-associated interstitial lung disease,” Arthritis and Rheumatism, vol. 56, no. 9, pp. 3167–3168, 2007.
[70]
M. L. Whitfield, D. R. Finlay, J. I. Murray et al., “Systemic and cell type-specific gene expression patterns in scleroderma skin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12319–12324, 2003.
[71]
S. Sato, M. Fujimoto, M. Hasegawa, K. Takehara, and T. F. Tedder, “Altered B lymphocyte function induces systemic autoimmunity in systemic sclerosis,” Molecular Immunology, vol. 41, no. 12, pp. 1123–1133, 2004.
[72]
S. Sato, M. Hasegawa, M. Fujimoto, T. F. Tedder, and K. Takehara, “Quantitative genetic variation in CD19 expression correlates with autoimmunity,” Journal of Immunology, vol. 165, no. 11, pp. 6635–6643, 2000.
[73]
D. Daoussis, S. N. C. Liossis, A. C. Tsamandas et al., “Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study,” Rheumatology, vol. 49, no. 2, pp. 271–280, 2009.
[74]
F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Macrophage activation and polarization,” Frontiers in Bioscience, vol. 13, no. 2, pp. 453–461, 2008.
[75]
N. Higashi-Kuwata, M. Jinnin, T. Makino et al., “Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis,” Arthritis Research and Therapy, vol. 12, no. 4, article R128, 2010.
[76]
S. K. Mathai, M. Gulati, X. Peng et al., “Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype,” Laboratory Investigation, vol. 90, no. 6, pp. 812–823, 2010.
[77]
F. Zuo, N. Kaminski, E. Eugui et al., “Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 9, pp. 6292–6297, 2002.
[78]
R. C. A. Dancer, A. M. Wood, and D. R. Thickett, “Metalloproteinases in idiopathic pulmonary fibrosis,” European Respiratory Journal, vol. 38, no. 6, pp. 1461–1467, 2011.
[79]
I. O. Rosas, T. J. Richards, K. Konishi et al., “MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis,” PLoS Medicine, vol. 5, no. 4, article e93, pp. 623–633, 2008.
[80]
P. Moinzadeh, T. Krieg, M. Hellmich et al., “Elevated MMP-7 levels in patients with systemic sclerosis: correlation with pulmonary involvement,” Experimental Dermatology, vol. 20, no. 9, pp. 770–773, 2011.
[81]
W. U. Kim, S. Y. Min, M. L. Cho et al., “Elevated matrix metalloproteinase-9 in patients with systemic sclerosis,” Arthritis Research & Therapy, vol. 7, no. 1, pp. R71–R79, 2005.
[82]
G. N. Andersen, K. Nilsson, J. Pourazar et al., “Bronchoalveolar matrix metalloproteinase 9 relates to restrictive lung function impairment in systemic sclerosis,” Respiratory Medicine, vol. 101, no. 10, pp. 2199–2206, 2007.
[83]
M. Manetti, S. Guiducci, E. Romano et al., “Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage,” Annals of the Rheumatic Diseases, vol. 71, no. 6, pp. 1064–1072, 2012.
[84]
K. Kikuchi, M. Kubo, S. Sato, M. Fujimoto, and K. Tamaki, “Serum tissue inhibitor of metalloproteinases in patients with systemic sclerosis,” Journal of the American Academy of Dermatology, vol. 33, no. 6, pp. 973–978, 1995.
[85]
F. Chua and G. J. Laurent, “Neutrophil elastase: mediator of extracellular matrix destruction and accumulation,” Proceedings of the American Thoracic Society, vol. 3, no. 5, pp. 424–427, 2006.
[86]
T. Hara, F. Ogawa, K. Yanaba et al., “Elevated serum concentrations of polymorphonuclear neutrophilic leukocyte elastase in systemic sclerosis: association with pulmonary fibrosis,” Journal of Rheumatology, vol. 36, no. 1, pp. 99–105, 2009.
[87]
M. Dziadzio, W. Usinger, A. Leask et al., “N-terminal connective tissue growth factor is a marker of the fibrotic phenotype in scleroderma,” QJM—Monthly Journal of the Association of Physicians, vol. 98, no. 7, pp. 485–492, 2005.
[88]
S. Sato, T. Nagaoka, M. Hasegawa et al., “Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis,” Journal of Rheumatology, vol. 27, no. 1, pp. 149–154, 2000.
[89]
M. Dziadzio, R. E. Smith, D. J. Abraham, C. M. Black, and C. P. Denton, “Circulating levels of active transforming growth factor β1 are reduced in diffuse cutaneous systemic sclerosis and correlate inversely with the modified Rodnan skin score,” Rheumatology, vol. 44, no. 12, pp. 1518–1524, 2005.
[90]
F. Ogawa, K. Shimizu, E. Muroi, T. Hara, and S. Sato, “Increasing levels of serum antioxidant status, total antioxidant power, in systemic sclerosis,” Clinical Rheumatology, vol. 30, no. 7, pp. 921–925, 2011.
[91]
F. Ogawa, K. Shimizu, E. Muroi et al., “Serum levels of 8-isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis,” Rheumatology, vol. 45, no. 7, pp. 815–818, 2006.
[92]
L. Scussel-Lonzetti, F. Joyal, J. P. Raynauld et al., “Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival,” Medicine, vol. 81, no. 2, pp. 154–167, 2002.
[93]
C. Ferri, G. Valentini, F. Cozzi et al., “Systemic sclerosis: demographic, clinical, and serologic features and survival in 1,012 Italian patients,” Medicine, vol. 81, no. 2, pp. 139–153, 2002.
[94]
C. Muangchan, S. Harding, S. Khimdas et al., “C—reactive protein (CRP) is associated with high disease activity in systemic sclerosis: results from the Canadian Scleroderma Research Group (CSRG),” Arthritis Care & Research (Hoboken). In press.
[95]
T. Ohtsuka, “Serum interleukin-6 level is reflected in elevated high-sensitivity C-reactive protein level in patients with systemic sclerosis,” Journal of Dermatology, vol. 37, no. 9, pp. 801–806, 2010.
[96]
G. W. Lee, T. H. Lee, and J. T. Vilcek, “TSG-14, a tumor necrosis factor- and IL-1-inducible protein, is a novel member of the pentaxin family of acute phase proteins,” Journal of Immunology, vol. 150, no. 5, pp. 1804–1812, 1993.
[97]
Y. Iwata, A. Yoshizaki, F. Ogawa et al., “Increased serum pentraxin 3 in patients with systemic sclerosis,” Journal of Rheumatology, vol. 36, no. 5, pp. 976–983, 2009.
[98]
S. Nagpal, S. Na, and R. Rathnachalam, “Noncalcemic actions of vitamin D receptor ligands,” Endocrine Reviews, vol. 26, no. 5, pp. 662–687, 2005.
[99]
P. Caramaschi, A. Dalla Gassa, O. Ruzzenente et al., “Very low levels of vitamin D in systemic sclerosis patients,” Clinical Rheumatology, vol. 29, no. 12, pp. 1419–1425, 2010.
[100]
Y. Arnson, H. Amital, N. Agmon-Levin et al., “Serum 25-OH vitamin D concentrations are linked with various clinical aspects in patients with systemic sclerosis: a retrospective cohort study and review of the literature,” Autoimmunity Reviews, vol. 10, no. 8, pp. 490–494, 2011.
[101]
A. Vacca, C. Cormier, M. Piras, A. Mathieu, A. Kahan, and Y. Allanore, “Vitamin D deficiency and insufficiency in 2 independent cohorts of patients with systemic sclerosis,” Journal of Rheumatology, vol. 36, no. 9, pp. 1924–1929, 2009.
[102]
C. Fonseca, D. Abraham, and E. A. Renzoni, “Endothelin in pulmonary fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 1, pp. 1–10, 2010.
[103]
A. D. Cambrey, N. K. Harrison, K. E. Dawes et al., “Increased levels of endothelin-1 in bronchoalveolar lavage fluid from patients with systemic sclerosis contribute to fibroblast mitogenic activity in vitro,” American Journal of Respiratory Cell and Molecular Biology, vol. 11, no. 4, pp. 439–445, 1994.
[104]
D. J. Abraham, R. Vancheeswaran, M. R. Dashwood et al., “Increased levels of endothelin-1 and differential endothelin type A and B receptor expression in scleroderma-associated fibrotic lung disease,” American Journal of Pathology, vol. 151, no. 3, pp. 831–841, 1997.
[105]
H. Ihn, S. Sato, M. Fujimoto, K. Takehara, and K. Tamaki, “Increased serum levels of soluble vascular cell adhesion molecule-1 and E-selectin in patients with systemic sclerosis,” British Journal of Rheumatology, vol. 37, no. 11, pp. 1188–1192, 1998.
[106]
A. Kuryliszyn-Moskal, P. A. Klimiuk, and S. Sierakowski, “Soluble adhesion molecules (sVCAM-1, sE-selectin), vascular endothelial growth factor (VEGF) and endothelin-1 in patients with systemic sclerosis: relationship to organ systemic involvement,” Clinical Rheumatology, vol. 24, no. 2, pp. 111–116, 2005.
[107]
R. Vancheeswaran, T. Magoulas, G. Efrat et al., “Circulating endothelin-1 levels in systemic sclerosis subsets—a marker of fibrosis or vasular dysfunction?” Journal of Rheumatology, vol. 21, no. 10, pp. 1838–1844, 1994.
[108]
C. Mihai and J. W. C. Tervaert, “Anti-endothelial cell antibodies in systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 69, no. 2, pp. 319–324, 2010.
[109]
H. Ihn, S. Sato, M. Fujimoto et al., “Characterization of autoantibodies to endothelial cells in systemic sclerosis (SSc): association with pulmonary fibrosis,” Clinical and Experimental Immunology, vol. 119, no. 1, pp. 203–209, 2000.
[110]
D. Launay, M. Humbert, A. Berezne et al., “Clinical characteristics and survival in systemic sclerosis-related pulmonary hypertension associated with interstitial lung disease,” Chest, vol. 140, no. 4, pp. 1016–1024, 2011.
[111]
B. E. Schreiber, C. J. Valerio, G. J. Keir et al., “Improving the detection of pulmonary hypertension in systemic sclerosis using pulmonary function tests,” Arthritis and Rheumatism, vol. 63, no. 11, pp. 3531–3539, 2011.
[112]
T. J. Corte, S. J. Wort, P. S. MacDonald et al., “Pulmonary function vascular index predicts prognosis in idiopathic interstitial pneumonia,” Respirology, vol. 17, no. 4, pp. 674–680, 2012.
[113]
S. M. Arcasoy, J. D. Christie, V. A. Ferrari et al., “Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 5, pp. 735–740, 2003.
[114]
N. Nagaya, T. Nishikimi, Y. Okano et al., “Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension,” Journal of the American College of Cardiology, vol. 31, no. 1, pp. 202–208, 1998.
[115]
C. T. Gan, G. P. McCann, J. T. Marcus et al., “NT-proBNP reflects right ventricular structure and function in pulmonary hypertension,” European Respiratory Journal, vol. 28, no. 6, pp. 1190–1194, 2006.
[116]
H. H. Leuchte, R. A. Baumgartner, M. El Nounou et al., “Brain natriuretic peptide is a prognostic parameter in chronic lung disease,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 7, pp. 744–750, 2006.
[117]
T. J. Corte, S. J. Wort, M. A. Gatzoulis et al., “Elevated brain natriuretic peptide predicts mortality in interstitial lung disease,” European Respiratory Journal, vol. 36, no. 4, pp. 819–825, 2010.