全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

数控机床滚珠丝杠副性能退化评估技术

DOI: 10.13196/j.cims.2015.05.017, PP. 1293-1300

Keywords: 丝杠,性能,灰色神经网络,遗传算法,量子

Full-Text   Cite this paper   Add to My Lib

Abstract:

为准确评估滚珠丝杠副性能的退化程度,提出基于量子遗传算法和灰色神经网络的滚珠丝杠副性能退化评估方法。以CINCINNATIV5-3000加工中心的滚珠丝杠副为研究对象,设计了丝杠在线监测系统,利用动态聚类数据处理技术对采集的海量数据进行预处理,提取信号的时域、频域及时频域特征,通过主分量分析方法压缩特征数量,构建了丝杠振动信号特征向量,采用量子遗传算法优化灰色神经网络的初始化参数,将特征向量输入到灰色神经网络进行训练,进而得到丝杠性能退化模型。实践运行结果表明,所建立的丝杠性能退化模型能够有效评估数控机床的丝杠的性能,研究成果具有重要的工业推广价值。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133