全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

烷基三甲基溴化铵对羧甲基纤维素钠亚浓缠结溶液流变行为的影响

DOI: 10.11777/j.issn1000-3304.2015.14441, PP. 827-834

Keywords: 聚电解质,表面活性剂,亚浓缠结溶液,临界聚集浓度,逾渗

Full-Text   Cite this paper   Add to My Lib

Abstract:

以羧甲基纤维素钠(NaCMC)-烷基三甲基溴化铵(CnTAB)复合体系为研究对象,在NaCMC亚浓缠结溶液中考察了CnTAB烷基尾链长度对CnTAB临界缔合浓度(cac)及溶液流变行为的影响.采用荧光探针法测得cac值,根据吉布斯自由能定量分析了烷基尾链对胶束缔合行为的影响.稳态流变测试结果表明,较高浓度CnTAB对NaCMC亚浓缠结溶液有强烈的增黏作用.显微观察表明,低浓度CnTAB形成孤立胶束(约5nm),而较高浓度CnTAB则形成胶束复合聚集体(约30nm).扣除胶束电荷中和所致降黏作用后,孤立胶束表现为等效刚性球,NaCMC亚浓缠结溶液的黏度变化符合Einstein方程;相反,胶束在临界浓度以上发生逾渗,形成胶束复合聚集体,进一步形成贯穿于NaCMC分子缠结网路的胶束逾渗网络.首次揭示了复合体系增黏的实质是胶束网络逾渗,而不是由胶束吸附聚电解质链形成物理网络.增黏阶段NaCMC亚浓缠结溶液的黏度变化符合逾渗模型和平均场理论.长程静电相互作用控制胶束缔合与逾渗行为,逾渗临界胶束体积分数随CnTAB尾链长度增加而降低,临界胶束表面间距随CnTAB尾链长度增加而增大.

References

[1]  3 Dias R, Mel'nikov S, Lindman B, Miguel M G.Langmuir, 2000, 16(24):9577~9583
[2]  4 Marchetti S, Onori G, Cametti C.J Phys Chem B, 2005, 109(8):3676~3680
[3]  5 Moran M C, Miguel M G, Lindman B.Biomacromolecules, 2007, 8(12):3886~3892
[4]  6 Chiappisi L, Hoffmann I, Gradzielski M.Soft Matter, 2013, 9(15):3896~3909
[5]  7 Hansson P, Almgren M.J Phys Chem, 1996, 100(21):9038~9046
[6]  8 Guillot S, Delsanti M, Desert S, Langevin D.Langmuir, 2003, 19(2):230~237
[7]  9 Diamant H, Andelman D.Phys Rev E, 2000, 61(6):6740~6749
[8]  10 Barck M, Stenius P.Colloids Surf A, 1994, 89(1):59~69
[9]  11 Naves A F, Petri D F S.Colloids Surf A, 2005, 254(1-3):207~214
[10]  12 Jain N, Trabelsi S, Guillot S, McLouglilin D, Langevin D, Letellier P, Turmine M.Langmuir, 2004, 20(20):8496~8503
[11]  13 Hayakawa K, Santerre J P, Kwak J C T.Macromolecules, 1983, 16(10):1642~1645
[12]  14 Wallin T, Linse P.Langmuir, 1996, 12(2):305~314
[13]  15 Trabelsi S, Raspaud E, Langevin D.Langmuir, 2007, 23(20):10053~10062
[14]  16 Bakshi M S, Sachar S.Colloid Polym Sci, 2004, 282(9):993~999
[15]  17 Mata J, Patel J, Jain N, Ghosh G, Bahadur P.J.Colloid Interf Sci, 2006, 297(2):797~804
[16]  18 Ansari A A, Kamil M, Kabir ud D.J Disper Sci Technol, 2013, 34(5):722~730
[17]  19 Liu J, Zhang Q, Huo Y, Zhao M W, Sun D Z, Wei X L, Liu S J, Zheng L Q.Colloid Polym Sci, 2012, 290(17):1721~1730
[18]  20 Bakshi M S, Kaur I.Colloids Surf A, 2003, 227(1-3):9~19
[19]  21 Chakraborty T, Chakraborty I, Ghosh S.Langmuir, 2006, 22(24):9905~9913
[20]  22 Sardar N, Kamil M, Kabirud D.Colloids Surf A, 2012, 415:413~420
[21]  23 Wang X Y, Li Y J, Li J X, Wang J B, Wang Y L, Guo Z X, Yan H.J Phys Chem B, 2005, 109(21):10807~10812
[22]  24 Liu J, Zheng L Q, Sun D Z, Wei X L.Colloids Surf A, 2010, 358(1-3):93~100
[23]  25 Trabelsi S, Langevin D.Langmuir, 2007, 23(3):1248~1252
[24]  26 Sun D Z, Wei X L, Wang S N, Yu L, Zheng L Q.J Disper Sci Technol, 2012, 33(1-3):5~14
[25]  27 Wu Q, Shangguan Y G, Du M, Zhou J P, Song Y H, Zheng Q.J Colloid Interf Sci, 2009, 339(1):236~242
[26]  28 Gupta S, Moulik S P, Das A R.Macromol Chem Phys, 1991, 192(2):447~460
[27]  29 Plucktaveesak N, Konop A J, Colby R H.J Phys Chem B, 2003, 107(32):8166~8171
[28]  30 Wu Q, Du M, Shangguan Y G, Zhou J P, Zheng Q.Colloids Surf A, 2009, 332(1):13~18
[29]  31 Plucktaveesak N.Solution Rheology of Polyelectrolytes and Polyelectrolyte-Surfactant System.Pennsylvania:The Phennsylvania State University Press, 2003.100~116
[30]  32 Blomstedt M, Vuorinen T.J.Wood Sci, 2007, 53(3):223~228
[31]  33 Zhang L M.Macromol Mater Eng, 2001, 286(5):267~275
[32]  34 Reed W F, Ghosh S, Medjahdi G, Francois J.Macromolecules, 1991, 24(23):6189~6198
[33]  1 Thunemann A F. Prog Polym Sci, 2002, 27(8):1473~1572
[34]  2 Wever D A Z, Picchioni F, Broekhuis A A.Prog Polym Sci, 2011, 36(11):1558~1628
[35]  35 Oelschlaeger C, Suwita P, Willenbacher N.Langmuir, 2010, 26(10):7045~7053
[36]  36 Buhler E, Boué F.Macromolecules, 2004, 37(4):1600~1610
[37]  37 Rice S A, Harris F E.J Phys Chem, 1954, 58(9):733~739
[38]  38 Dobrynin A V, Colby R H, Rubinstein M.Macromolecules, 1995, 28(6):1859~1871
[39]  39 André Guinier G F.Small-angle Scattering of X-rays.New York:Wiley, 1955.5~65
[40]  40 Odijk T.J Polym Sci:Polym Phys Edit, 1977, 15(3):477~483
[41]  41 Skolnick J, Fixman M.Macromolecules, 1977, 10(5):944~948
[42]  42 Haggis G H, Hasted J B, Buchanan T J.J Chem Phys, 1952, 20(9):1452~1465
[43]  43 Manning G S.J Chem Phys, 1969, 51(3):924~933
[44]  44 Rubinstein M, Colby R H.Polymer Physics.New York:Oxford University Press, 2003.171~191
[45]  45 de Gennes P G.Scaling Concepts in Polymer Physics.London:Cornell University Press, 1979.38~43
[46]  46 Dobrynin A V, Rubinstein M.Prog Polym Sci, 2005, 30(11):1049~1118
[47]  47 Jones M N.J.Colloid Interf Sci, 1967, 23(1):36~42
[48]  48 Winnik F M, Regismond S T A.Colloids Surf A, 1996, 118(1-2):1~39
[49]  49 Pasupati M, Mysels K J.Critical Micelle Concentration of Aqueous Surfactant Systems.Washington, D.C.:National Bureau of Standards, 1971.103~107
[50]  50 Chen L J, Lin S Y, Huang C C.J Phys Chem B, 1998, 102(22):4350~4356
[51]  51 Konop A J, Colby R H.Langmuir, 1999, 15(1):58~65
[52]  52 van Stam J, Depaemelaere S, de Schryver F C.J Chem Educ, 1998, 75(1):93~98
[53]  53 Hansson P, Jonsson B, Strom C, Soderman O.J Phys Chem B, 2000, 104(15):3496~3506
[54]  54 Ahmed S, Jones F R.J Mater Sci, 1990, 25(12):4933~4942
[55]  55 Song Yihu(宋义虎), Zheng Qiang(郑强).Polymer Bulletin(高分子通报), 2013, (9):22~34
[56]  56 Song Yihu(宋义虎), Du Miao(杜淼), Yang Hongmei(杨红梅), Zheng Qiang(郑强).Acta Polymerica Sinica(高分子学报), 2013, (9):1115~1130
[57]  57 Carmona F, Canet R, Delhaes P.J Appl Phys, 1987, 61(7):2550~2557
[58]  58 Carmona F, Valot E, Servant L, Ricci M.J Phys I France, 1992, 2(5):503~510
[59]  59 Heaney M B.Physica A, 1997, 241(1-2):296~300
[60]  60 Heaney M.Phys Rev B, 1995, 52(17):12477~12480

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133