全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

通过熔体自由基反应调控聚丙烯体系的链结构和相结构

DOI: 10.3724/SP.J.1105.2012.12174, PP. 1200-1217

Keywords: 自由基,熔体反应,链结构,相结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

熔融反应加工是聚合物改性和制备聚合物纳米复合材料的重要途径之一.在此过程中,多数加成聚合物由于受到热、剪切或引发剂作用,通常可原位形成大分子自由基反应中间体.我们系统地研究了如何利用这类大分子自由基调控聚合物分子链的拓扑结构和聚合物纳米复合体系的相结构与界面.然而,某些聚合物大分子自由基,如聚丙烯(PP),受其分子链化学结构决定,在熔融反应条件下非常易于发生降解.研究发现,将可控自由基聚合中调控自由基反应活性的方法应用在熔融反应过程中可以显著抑制PP的降解,促进主反应的发生,在制备长链支化聚合物、调控聚合物纳米复合材料的相结构方面发挥了重要作用.本文介绍了本研究组近几年来通过熔体自由基反应调控PP体系的链结构和相结构的相关研究工作,如实现PP的长链支化,制备高熔体强度PP;在制备PP/C60、PP/碳纳米管(CNTs)纳米复合材料过程中,利用熔体界面区域所发生的自由基反应,提高了纳米粒子与PP的界面相互作用,改善了纳米粒子在PP中的分散状态等.

References

[1]  4 Koval’chuk A A,Shevchenko V G,Shchegolikhin A N,Nedorezova P M,Klyamkina A N,Aladyshev A M.Macromolecules,2008,41:7536~7542
[2]  12 Cartier H,Hu G H.J Appl Polym Sci,1998,36:1053~1063
[3]  17 Münstedt H,Schwetz M,Heindl M,Schmidt M.Rheol Acta,2001,40:384~394
[4]  25 Passaglia E,Coiai S,Augier S.Prog Polym Sci,2009,34:911~947
[5]  26 Zhao SW,Liu L,Fu Y,Guo Q X.J Phys Org Chem,2005,18:353~367
[6]  27 Fischer H,Radom L.Angew Chem Int Ed,2001,40:1340~1371
[7]  28 Wan D,Ma L,Zhang Z,Xing H,Wang L,Jiang Z,Zhang G,Tang T.Polym Degrad Stab,2012,97:40~48
[8]  29 Borsig E,van Duin M,Gotsis A D,Picchioni F.Eur Polym J,2008,44:200~212
[9]  30 Li Yingchun(李迎春),Han Chaoyü(韩朝昱),Zhang Suyan(张素艳),Xing Zhiguang(邢志光).China Plastics Industry(塑料工业),2003,31:43~45
[10]  33 Hone J,Whitney M,Piskoti C,Johnson A T,Fischer J E.App Phy Lett,2000,77:666~668
[11]  34 Vigolo B,Penicaud A,Coulon C,Sauder C,Pailler R,Journet C,Bernier P,Poulin P.Science,2000,290:1331~1334
[12]  35 Ajayan P M,Stephan O,Colliex C,Trauth D.Science,1994,265:1212~1214
[13]  36 Wang Y J,Wen X,Wan D,Zhang Z J,Tang T.J Mater Chem,2012,22:3930~3938
[14]  37 Zhang Z,Che Y,Smaldone R A,Xu M,Bunes B R,Moore J S,Zang L.J Am Chem Soc,2010,132:14113~14117
[15]  38 Yang D Q,Hennequin B,Sacher E.Chem Mater,2006,18:5033~5038
[16]  1 Naguib H, Park C,Panzer U,Reichelt N.Polym Eng Sci,2002,42:1481~1492
[17]  2 Sugimoto M,Suzuki Y,Hyun K,Ahn KH,Ushioda T,Nishioka A.Rheol Acta,2006,46:33~44
[18]  3 Lee J I,Yang S B,Jung H T.Macromolecules,2009,42:8328~8334
[19]  5 McIntosh D,Khabashesku V N,Barrera E V.J Phys Chem C,2007,111:1592~1600
[20]  6 Krause B,Stephan M,Volkland S,Voigt D,Haussler L,Dorschner H.J Appl Polym Sci,2006,99:260~265
[21]  7 Schulze D,Trinkle S,Mülhaupt R,Friedrich C.Rheol Acta,2003,42:251~258
[22]  8 Graebling D.Macromolecules,2002,35:4602~4610
[23]  9 Tian J,Yu W,Zhou C.Polymer,2006,47:7962~7969
[24]  10 Parent J S,Sengupta S S,Kaufman M,Chaudhary B I.Polymer,2008,49:3884~3891
[25]  11 Parent J S,Bodsworth A,Sengupta S S,Kontopoulou M,Chaudhary B I.Polymer,2009,50:85~94
[26]  13 Coiai S,Passaglia E,Aglietto M,Ciardelli F.Macromolecules,2004,37:8414~8423
[27]  14 Graebling D.Macromolecules,2002,35:4602~4610
[28]  15 Zhang Z,Xing H.Polymer,2010,51:1593~1598
[29]  16 Shing J,Baker W,Russell K.J Polym Sci Part A:Polym Chem,1995,33:633~642
[30]  18 Lambrinos P,Tardi M,Polton A,Sigwalt P.Eur Polym J,1990,26:1125~1135
[31]  19 Luo Y.Comprehensive Handbook of Chemical Bond Energies.CRC Press:Boca Raton,FL.2007
[32]  20 Zhang Z,Wan D,An Y,Liu F,Xing H,Wang L,Jiang Z,Tang T.Polym Degrad Stab,2011,96:653~659
[33]  21 Xing H,Jiang Z,Zhang Z,Qiu J,Wang Y,Ma L,Tang T.Polymer,2012,53:947~955
[34]  22 Matyjaszewski K,Poli R.Macromolecules,2005,38:8093~8100
[35]  23 Coiai S,Augier S,Pinzino C,Passaglia E.Polym Degrad Stab,2010,95:298~305
[36]  24 Coiai S,Passaglia E,Aglietto M,Ciardelli F.Macromolecules,2004,37:8414~8423
[37]  31 Zhang Z J,Wan D,Xing H P.Polymer,2012,53:121~129
[38]  32 Kimura T,Ago H,Tobita M,Ohshima S,Kyotani M,Yumura M.Adv Mater,2002,14:1380~1383
[39]  39 Wan D,Zhang Z J,Wang Y J,Xing H P,Jiang Z W,Tang T.Soft Matter,2011,7:5290~5299

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133