全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米纤维素晶须的表面改性及其在环氧树脂中的应用

DOI: 10.11777/j.issn1000-3304.2015.15007, PP. 1036-1043

Keywords: 纳米纤维素晶须,化学改性,环氧树脂,纳米复合材料,拉伸性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

以棉纤维素为原料,采用硫酸水解法制备了纳米纤维素晶须.以N,N-二甲基甲酰胺(DMF)为分散介质,二甲基氨基吡啶(DMAP)为催化剂,十二烯基琥珀酸酐为酯化剂对纳米纤维素晶须进行化学改性,得到了一系列取代程度不同的改性产物(记为DCNW).采用红外光谱(FTIR)、X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等手段对DCNW的结构和性能进行了分析和表征.选择表面取代度为0.3的改性产物作为复合材料的增强相.该改性产物能在丙酮中均匀分散和稳定悬浮,并且保持了改性前纳米纤维素晶须的棒状形态和高结晶度.将其分散于环氧单体中,通过浇铸法制备了纳米复合材料,考察了改性纳米纤维素晶须添加量对纳米复合材料拉伸性能、动态力学性能及耐湿热性的影响规律.结果表明,与空白环氧树脂相比,添加了改性纳米纤维素晶须的纳米复合材料的拉伸强度、杨氏模量和断裂伸长率都得到了提高.玻璃化转变温度、耐湿热性也得到了显著改善.其中,当改性纳米纤维素晶须的添加量为3.5%时,拉伸强度从纯环氧的39.85MPa提高到72.33MPa,增加了82%;杨氏模量增大了21%;断裂伸长率从纯环氧树脂的2.45%提高到7.29%,增加了198%;Tg值从纯环氧的103.4℃,提高到134.1℃;吸水率从1.9%下降到1.4%.

References

[1]  1 Yee A F,Pearson R A. J Mater Sci,1986,21(7):2462~274
[2]  2 Wang Z,Liu F,Liang W,Zhou L.J Reinf Plast Compos,2013,32(16):1224~1233
[3]  3 Mimura K,Ito H,Fujioka H.Polym,2001,42(22):9223~9233
[4]  4 Hsieh T,Kinloch A,Masania K,Taylor A,Sprenger S.Polymer,2010,51(26):6284~6294
[5]  5 Yang J,Han C R,Duan J F,Ma M G,Zhang X M,Xu F,Sun R C,Xie X M.J Mater Chem,2012,22(42):22467~2280
[6]  6 Tang L,Weder C.ACS Appl Mater Interface,2010,2(4):1073~1080
[7]  7 Favier V,Chanzy H,Cavaille J.Macromolecules,1995,28(18):6365~6357
[8]  8 Bahar E,Ucar N,Onen A,Wang Y,Oksüz M,Ayaz O,Ucar M,Demir A.J Appl Polym Sci,2012,125(4): 2882~2889
[9]  9 Wang D,Yu J,Zhang J,He J,Zhang J.Compos Sci Technol,2013,85:83~89
[10]  10 ?turcová A,Davies G R,Eichhorn S J.Biomacromolecules,2005,6(2):1055~1061
[11]  11 Eichhorn S,Dufresne A,Aranguren M,Marcovich N,Capadona J,Rowan S,Weder C,Roman M,Remeckar S,Gindl W,Veigel S,Keckes J,Yano H,Abe K,Negi M,Nakagaito A,Mangalam A,Simomsen J,Benight A,Bismarck A,Peijs T.J Mater Sci,2010,45(1):1~33
[12]  12 Masoodi R,El-Hajjar R F,Pillai K M,Sabo R.Mater Des,2012,36:570~576
[13]  13 Lu J,Askeland P,Drzal L T.Polymer,2008,49(5):1285~1296
[14]  14 Gabr MH,Elrahman MA,Okubo K,Fujii T.J Mater Sci,2010,45(14):3841~3850
[15]  15 Gabr MH,Elrahman MA,Okubo K,Fujii T.Compos Struct,2010,92(9):1999~2006
[16]  23 Rusli R,Eichhorn S.J Appl Phys Lett,2008,93(3):033111~033113
[17]  24 Siqueira G,Bras J,Dufresne A.Langmuir,2010,26(1):402~411
[18]  16 Ahmed A,Radwan M,Marzouk W,Abdel M.Minia J Eng Technol,2014,33(1):208~214
[19]  17 Yuzuru S,Yasuo M,Yoshitaka T.Biomacromolecules,2007,8:2976~2978
[20]  18 Aoyama R,Okubo K,Fujii T.Fatigue damage evaluation of plain woven carbon fiber reinforced plastic(CFRP) modified with MFC(micro-fibrillated cellulose) by thermo-elastic damage analysis(TDA).In:Nakhiah C G,Naguid H E,eds.Behavior and Mechanics of Multifunctional materials and Composites.Bellingham:SPIE,2013. 86891H-1~8
[21]  19 Yuan H,Nishiyama Y,Wada M,Kuga S.Biomacromolecules,2006,7(3):696~700
[22]  20 Raquez J M,Murena Y,Goffin A L,Habibi Y,Ruelle B,DeBuyl F,Dubois P.Compos Sci Technol,2012,72(5):544~549
[23]  21 Matos R M,Cavaille J,Dufresne A,Gerard J,Graillat C.Comp Interfaces,2000,7(2):117~131
[24]  22 Rusli R,Shanmuganathan K,Rowan S J,Weder C,Eichhorn S.Biomacromolecules,2011,12(4):1363~1369

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133