全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cellular Automata-Based Parallel Random Number Generators Using FPGAs

DOI: 10.1155/2012/219028

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cellular computing represents a new paradigm for implementing high-speed massively parallel machines. Cellular automata (CA), which consist of an array of locally connected processing elements, are a basic form of a cellular-based architecture. The use of field programmable gate arrays (FPGAs) for implementing CA accelerators has shown promising results. This paper investigates the design of CA-based pseudo-random number generators (PRNGs) using an FPGA platform. To improve the quality of the random numbers that are generated, the basic CA structure is enhanced in two ways. First, the addition of a superrule to each CA cell is considered. The resulting self-programmable CA (SPCA) uses the superrule to determine when to make a dynamic rule change in each CA cell. The superrule takes its inputs from neighboring cells and can be considered itself a second CA working in parallel with the main CA. When implemented on an FPGA, the use of lookup tables in each logic cell removes any restrictions on how the super-rules should be defined. Second, a hybrid configuration is formed by combining a CA with a linear feedback shift register (LFSR). This is advantageous for FPGA designs due to the compactness of the LFSR implementations. A standard software package for statistically evaluating the quality of random number sequences known as DIEHARD is used to validate the results. Both the SPCA and the hybrid CA/LFSR were found to pass all the DIEHARD tests. 1. Introduction Cellular computing is touted as one of the new paradigms for future computational systems due to three key properties: simplicity, massive parallelism, and local interconnect [1]. Such systems have advantages over the traditional general-purpose processor in terms of high-speed parallel computation and fault tolerant capabilities. A variety of unique applications have been proposed and implemented using the cellular computational model including fault-tolerant self-healing architectures [2], cellular neural networks [3, 4], and pseudo-random number generators [5]. Cellular automata (CA), which consist of an array of locally interconnected, elementary processing elements, can be viewed as one form of a high-speed massively parallel machine. As CA are dynamical systems which evolve in discrete time and space, they are used to model a variety of physical and biological processes, including fluid dynamics, the immune system, the evolution of genetic regulatory networks, and urban traffic flow [6–10]. A CA-based architecture will likely form the basis for the development of ultra-high speed and compact

References

[1]  M. Sipper, “Emergence of cellular computing,” Computer, vol. 32, no. 7, pp. 18–26, 1999.
[2]  Z. Zhang, Y. Wang, S. Yang, R. Yao, and J. Cui, “The research of self-repairing digital circuit based on embryonic cellular array,” Neural Computing and Applications, vol. 17, no. 2, pp. 145–151, 2008.
[3]  L. O. Chua and L. Yang, “Cellular neural networks: theory,” IEEE Transactions on Circuits and Systems, vol. 35, no. 10, pp. 1257–1272, 1988.
[4]  C. Schwarzlmüeller and K. Kyamakya, “Implementing a CNN Universal Machine on FPGA: state-of-the-art and key challenges,” in Proceedings of the International Symposium on Theoretical Engineering (ISTET '09), pp. 1–5, June 2009.
[5]  S. Wolfram, “Random sequence generation by cellular automata,” Advances in Applied Mathematics, vol. 7, no. 2, pp. 123–169, 1986.
[6]  S. Wolfram, A New Kind of Science, Wolfram Media, 2002.
[7]  B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press, 1998.
[8]  J. Mata and M. Cohn, “Cellular automata-based modeling program: synthetic immune system,” Immunological Reviews, vol. 216, no. 1, pp. 198–212, 2007.
[9]  L. Schramm, Y. Jin, and B. Sendhoff, “Redundancy creates opportunity in developmental representations,” in Proceedings of the IEEE Symposium on Artificial Life (ALIFE '11), pp. 203–210, April 2011.
[10]  O. K. Tonguz, W. Viriyasitavat, and F. Bai, “Modeling urban traffic: a cellular automata approach,” IEEE Communications Magazine, vol. 47, no. 5, pp. 142–150, 2009.
[11]  L. R. Hook IV and S. C. Lee, “Design and simulation of 2-D 2-dot quantum-dot cellular automata logic,” IEEE Transactions on Nanotechnology, vol. 10, no. 5, pp. 996–1003, 2011.
[12]  H. Cho and E. E. Swartzlander, “Adder designs and analyses for quantum-dot cellular automata,” IEEE Transactions on Nanotechnology, vol. 6, no. 3, pp. 374–383, 2007.
[13]  M. Mamei, A. Roli, and F. Zambonelli, “Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 35, no. 3, pp. 337–348, 2005.
[14]  S. Nichele and G. Tufte, “Trajectories and attractors as specification for the evolution of behaviour in cellular automata,” in Proceedings of the 6th IEEE World Congress on Computational Intelligence (WCCI '10), pp. 1–8, July 2010.
[15]  H. Kanoh and S. Sato, “Improved evolutionary design for rule-changing cellular automata based on the difficulty of problems,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC '07), pp. 1243–1248, October 2007.
[16]  L. Fortuna, M. Frasca, A. S. Fiore, and L. O. Chua, “The wolfram machine,” International Journal of Bifurcation and Chaos, vol. 20, no. 12, pp. 3863–3917, 2010.
[17]  S. Srinivasan, S. Mathew, R. Ramanarayanan et al., “2.4GHz 7mW all-digital PVT-variation tolerant True Random Number Generator in 45nm CMOS,” in Proceedings of the 24th Symposium on VLSI Circuits (VLSIC '10), pp. 203–204, June 2010.
[18]  T. Kobori, T. Maruyama, and T. Hoshino, “A cellular automata system with FPGA,” in Proceedings of the 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 120–129, 2001.
[19]  P. A. Mudry, F. Vannel, G. Tempesti, and D. Mange, “CONFETTI: a reconfigurable hardware platform for prototyping cellular architectures,” in Proceedings of the 21st International Parallel and Distributed Processing Symposium (IPDPS '07), pp. 1–8, March 2007.
[20]  S. Murtaza, A. G. Hoekstra, and P. M. A. Shot, “Performance modeling of 2D cellular automata on FPGA,” in Proceedings of the International Conference on Field Programmable Logic and Applications (FPL '07), pp. 74–78, August 2007.
[21]  K. Furuya and E. J. McCluskey, “Two-pattern test capabilities of autonomous TPG circuits,” in Proceedings of the International Test Conference, pp. 704–711, October 1991.
[22]  P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller, and H. C. Card, “Cellular automata-based pseudorandom number generators for built-in self-test,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 8, pp. 842–859, 1989.
[23]  P. H. W. Leong, “Recent trends in FPGA architectures and applications,” in Proceedings of the 4th IEEE International Symposium on Electronic Design, Test and Applications (DELTA '08), pp. 137–141, January 2008.
[24]  A. DeHon, “Density advantage of configurable computing,” Computer, vol. 33, no. 4, pp. 41–49, 2000.
[25]  J. Sun, G. Peterson, and O. Storaasli, “Sparse matrix-vector multiplication design on FPGAs,” in Proceedings of the 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM '07), pp. 349–351, April 2007.
[26]  M. George and P. Alfke, “Linear Feedback Shift Registers in Virtex Devices,” Xilinx Application Note XAPP210 (v1.3), 2007.
[27]  S. U. Guan and S. K. Tan, “Pseudorandom number generation with self-programmable cellular automata,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 7, pp. 1095–1101, 2004.
[28]  G. Marsaglia, Diehard, 1996, http://stat.fsu.edu/~geo/diehard.html.
[29]  S. Nandi, B. Vamsi, S. Chakraborty, and P. P. Chaudhuri, “Cellular automata as a BIST structure for testing CMOS circuits,” IEE Proceedings, vol. 141, no. 1, pp. 41–47, 1994.
[30]  T. E. Tkacik, “A hardware random number generator,” in Proceedings of the Cryptographic Hardware and Embedded Systems (CHES '02), vol. 2523 of Lecture Notes in Computer Science, pp. 450–453, 2003.
[31]  I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203–215, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133