全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二氧化碳/环氧丙烷/马来酸酐三元共聚物对PPC/PHB共混物力学性能的影响

DOI: 10.11777/j.issn1000-3304.2015.14215, PP. 106-112

Keywords: 二氧化碳,马来酸酐,三元共聚物,力学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用稀土三元催化剂制备了二氧化碳-环氧丙烷-马来酸酐三元共聚物(PPCMA).用红外和核磁谱图确定了PPCMA的结构及马来酸酐单元的含量,3wt%马来酸酐投料量的PPCMA(共聚物中马来酸酐单元含量4.1%)的玻璃化转变温度(Tg)和起始热分解温度(Td-5%)分别为13.4℃和217℃,拉伸强度为2.88MPa,断裂伸长率为1669%,与二氧化碳-环氧丙烷共聚物(PPC)相比,引入少量马来酸酐的PPCMA有望成为一种韧性材料,并可对PPC和聚3-羟基丁酸酯(PHB)共混体系进行改性.当在PPC/PHB共混体系中添加10wt%的PPCMA时,所得共混材料的拉伸强度为18.2MPa,断裂伸长率则提高到85%,较没有添加PPCMA的样品提高了4.25倍,因此PPCMA的加入能有效提高PPC/PHB共混体系的韧性,改善PPC/PHB共混体系的力学性能.偏光显微镜的研究表明PPC/PHB共混体系加入PPCMA后,很快形成大量尺寸小的PHB球晶,且结晶速度大幅度提高,因此PPCMA在一定意义上可视为一种特殊的"成核剂".

References

[1]  1 Inoue S, Koinuma H, Tsuruta T.J Polym Lett Ed, 1969, 7:287~292
[2]  2 Cheng M, Moore D R, Reczek J J, Chanberlain B M, Lobkovsky E B, Coates G W.J Am Chen Sci, 2001, 123:8737~8749
[3]  3 Geoffrey W C, David R M.Angew Chem Int Ed.2004, 43:6618~6639
[4]  4 Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W.Chem Rev, 2001, 101:953~996
[5]  5 MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman C S, Williams C K, Shah N, Fennell P.Energy Environ Sci, 2010, 3:1645~1669
[6]  6 Sarbu T, Styrance T, BecKman E J.Nature, 2000, 405:165~168
[7]  7 Qin Y S, Wang X H.J Biotechnol, 2010, (5):1164~1180
[8]  8 Gao F X, Zhou Q H, Dong Y L, Qin Y S, Wang X H, Zhao X J, Wang F S.J Polym Res, 2012, (19):9877~9883
[9]  9 Zhou Qinghai(周庆海), Zhao Xiaojiang(赵晓江), Wang Xianhong(王献红), Wang Fosong(王佛松), Gao Fengxiang(高凤翔).CN patent, C08G, 200510017300.1.2005-11-21
[10]  10 Holmes P A.Phy Technol, 1985, 16(1):32~36
[11]  11 Huang J, Shetty A S , Wang M.Adv Ploym Technol, 1990, 10:23~30
[12]  12 Wendlandt K D, Geyer W, Mirschel G, Al-Haj Hemidi F.J Biotechnol, 2005, 117:119~129
[13]  13 Poal R.Science, 1989, 245(4923):1187~1189
[14]  14 Blumm E, Owen A J.Polymer, 1995, 36:4077~4081
[15]  15 Yoon J S, lee W S, Kim K S, Chin I J, Kim M N, Kim C.Eur Polym J, 2000, 36:435~442
[16]  16 Kim B O, Woo S I.Polym Bull, 1998, 41:707~712
[17]  17 Liu B Y, Zhao X J, Wang X H, Wang F S.Polymer, 2003, 44:1803~1808
[18]  18 Sclavons M, Franquiner P, Carlier V, Verfaillie G, Fallais I, Legras R, Laurent M, Thyrion F C.Polymer, 2000, 41:1989~1999
[19]  19 Feng Yanhua(冯岩华), Gu Yao(顾尧).China Elastomerics(弹性体), 2005, 15(5):1~5
[20]  20 Wu W K, Wang J L, Liu S Q, Huang K L, Liu Y F.Acta Phys Chim Sin, 2010, 26(10):2915~2919
[21]  21 Gao Fengxiang(高凤翔), Zhou Qinghai(周庆海), Qin Yusheng(秦玉升), Wang Xianhong(王献红), Zhao Xiaojiang(赵晓江), Wang Fosong(王佛松).Acta Polymerica Sinica(高分子学报), 2011, (7):772~777
[22]  22 Song P F, Xiao M, Du F G, Wang S J, Gan L Q, Liu G Q, Meng Y Z.J Appl Polym Sci, 2008, 109:4121~4129
[23]  23 Yu T, Zhou Y, Zhao Y, Liu K P, Chen E Q, Wang D J, Wang F S.Macromolecules, 2008, 41:3175~3180
[24]  24 Barham P J, Keller A.J Polym Sci:Polym Phys Ed, 1986, 24:69~77
[25]  25 Biddlestone F, Harris A, Hay J N, Hammond T.Polym Int, 1996, 39:221~229
[26]  26 Scandola M, Ceccorulli G, Pizzoli M.Makromol Chem, 1989, 10:47~50
[27]  27 Koning G J M, Lemstra P J, Hill D J, Carswell T G, O'Donnell J H.Polymer, 1992, 33:3295~3297
[28]  28 Koning G J M, Lemstra P J.Polymer, 1993, 34:4089~4094
[29]  29 You Jinxiu(尤金秀), Yu Wei(俞炜), Zhou Chixing(周持兴).Chemical Journal of Chinese Universities(高等学校化学学报), 2013, 34:2445~2450

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133