OALib Journal期刊
ISSN: 2333-9721
费用:99美元
CL-20/HMX共晶及其为基PBX界面作用和力学性能的MD模拟研究
DOI: 10.6023/A14040295 , PP. 1036-1042
Keywords: CL-20/HMX共晶炸药 ,高聚物粘结炸药 ,分子动力学模拟 ,界面相互作用 ,力学性能 ,感度
Abstract:
为提高共晶炸药的实际使用价值,改善其安全性和力学性能,以CL-20/HMX共晶炸药为基,分别添加2种高聚物粘结剂Estane5703(聚氨基甲酸乙酯)和HTPB(端羟基聚丁二烯),共构建两种共晶基高聚物粘结炸药(PBX)模型,进行细致的295KNPT分子动力学(MD)模拟研究.通过两种PBX模型及其与该共晶炸药的MD模拟结果比较表明,与基炸药之间的结合能Estane5703大于HTPB,预示含少量Estane5703的PBX稳定性和相容性更佳;对相关函数g(r)揭示粘结剂与基炸药界面相互作用的方式,以基炸药中H分别与Estane5703中羰基O和HTPB中端羟基O之间的氢键较强.与CL-20/HMX共晶炸药相比,少量粘结剂Estane5703或HTPB的加入,使弹性系数Cij下降,拉伸模量(E)、体积模量(K)和剪切模量(G)均显著减小,而泊松比(ν),柯西压(C12-C44)和K/G值明显增大,表明PBXs体系刚性减小,延展性增强,力学性能大为改善.少量粘结剂包覆使PBXs致钝,主要归因于其隔热、吸热并使体系变“软”的缓冲作用,而界面作用造成的分子结构引发键键长变化变为次要因素.
References
[1] Xiao, J.-J.; Zhu, W.-H.; Zhu, W.; Xiao, H.-M. Molecular Dynamics of Energetic Materials, Science Press, Beijing, 2013. (肖继军, 朱卫华, 朱伟, 肖鹤鸣, 高能材料分子动力学, 科学出版社, 北京, 2013.)
[2] Nair, U. R.; Sivabalan, R.; Gore, G. M.; Asthana, S. N.; Singh, H. Combust., Explos. Shock Waves 2005, 41, 121.
[3] Hoffman, D. M. J. Energ. Mater. 2000, 18, 1.
[4] Sun, H. J. Phys. Chem. B 1998, 102, 7338.
[5] Xu, X.-J.; Xiao, H.-M.; Xiao, J.-J.; Zhu, W.; Huang, H.; Li, J.-S. J. Phys. Chem. B 2006, 110, 7203.
[6] Xu, X.-J.; Xiao, J.-J.; Huang, H.; Li, J.-S.; Xiao, H.-M. Sci. China, Ser. B: Chem. 2007, 50, 737.
[7] Xiao, J.-J.; Wang, W.-R.; Chen, J.; Ji, G.-F.; Zhu, W.; Xiao, H.-M. Comput. Theor. Chem. 2012, 999, 21.
[8] Ding, L.; Zhao, F.-Q.; Liu, Z.-R. J. Solid Rocket Technol. 2008, 31, 164. (丁黎, 赵凤起, 刘子如, 固体火箭技术, 2008, 31, 164.)
[9] Liu, H.; Li, Q.-K.; He, Y.-H. Acta Phys. Sin. 2013, 62, 208202. (刘海, 李启楷, 何远航, 物理学报, 2013, 62, 208202.)
[10] Xu, X.-J.; Xiao, H.-M.; Ju, X.-H.; Gong, X.-D. Chin. J. Org. Chem. 2005, 25, 536. (许晓娟, 肖鹤鸣, 居学海, 贡雪东, 有机化学, 2005, 25, 536.)
[11] Geetha, M.; Nair, U. R.; Sarwade, D. B.; Gore, G. M.; Asthana, S. N.; Singh, H. J. Therm. Anal. Calorim. 2003, 73, 913.
[12] Zhu, W.; Xiao, J.-J.; Zheng, J.; Zhao, X.-B.; Chen, Z.-E.; Xiao, H.-M. Acta Chim. Sinica 2008, 66, 2592. (朱伟, 肖继军, 郑剑, 赵孝彬, 陈中娥, 肖鹤鸣, 化学学报, 2008, 66, 2592.)
[13] Ma, X.-F.; Zhao, F.; Xiao, J.-J.; Ji, G.-F.; Zhu, W.; Xiao, H.-M. Explos. Shock Waves 2007, 27, 109. (马秀芳, 赵峰, 肖继军, 姬广富, 朱伟, 肖鹤鸣, 爆炸与冲击, 2007, 27, 109.)
[14] Weiner, J. H. Statistical Mechanics of Elasticity, John Wiley, New York, 1983.
[15] Pugh, S. F. Philos. Mag. 1954, 45, 823.
[16] Pettifor, D. G. Mater. Sci. Technol. 1992, 8, 345.
[17] Agrawal, J. P. Prog. Energy Combust. Sci. 1998, 24, 1.
[18] Sikder, A. K.; Sikder, N. J. Hazard. Mater. 2004, 112, 1.
[19] Ma, C.-M.; Liu, Z.-L.; Xu, X.-J.; Yao, Q.-Z. Chin. J. Org. Chem. 2014, 37, 1288. (马丛明, 刘祖亮, 许晓娟, 姚其正, 有机化学, 2014, 37, 1288.)
[20] Tang, Z.; Yang, L.; Qiao, X.-J.; Zhang, T.-L.; Zhang, J.-G.; Liang, Y.-H. Acta Chim. Sinica 2012, 70, 471. (汤崭, 杨利, 乔小晶, 张同来, 张建国, 梁彦会, 化学学报, 2012, 70, 471.)
[21] Guo, C.-Y.; Zhang, H.-B.; Wang, X.-C.; Sun, J. Mater. Rev. 2012, 26, 49. (郭长艳, 张浩斌, 王晓川, 孙杰, 材料导报, 2012, 26, 49.)
[22] Bolton, O.; Matzger, A. J. Angew. Chem. Int. Ed. 2011, 50, 8960.
[23] Choi, C. S.; Boutin, H. P. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1970, 26, 1235.
[24] Zhu, W.-H.; Xiao, J.-J.; Ji, G.-F.; Zhao, F.; Xiao, H.-M. J. Phys. Chem. B 2007, 111, 12715.
[25] Agrawal, J. P. Propellants, Explos., Pyrotech. 2005, 30, 316.
[26] Foltz, M. F.; Coon, C. L.; Garcia, F.; Nichols, A. L. Propellants, Explos., Pyrotech. 1994, 19, 19.
[27] Xiao, H.-M.; Xu, X.-J.; Qiu, L. Theoretical Design of High Energy Density Materials, Science Press, Beijing, 2008. (肖鹤鸣, 许晓娟, 邱玲, 高能量密度材料的理论设计, 科学出版社, 北京, 2008.)
[28] Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. Cryst. Growth Des. 2012, 12, 4311.
[29] Yan, Q. L.; Zeman, S.; Elbeih, A. Thermochim. Acta 2012, 537, 1.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133