全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自然背景中交通标志的检测与识别

Keywords: 交通标志,图像分割,神经网络,轮廓特征,不变矩

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据我国交通标志的颜色和几何属性,提出了一种适用于自然背景下的交通标志识别系统.该系统采用RGB彩色分量差对自然背景下的交通标志图像进行分割,而后采用先分类后识别的两级神经网络结构,分别提取交通标志的轮廓特征和不变矩特征作为分类网络和识别网络的输入特征,最终对交通标志图像进行分类识别.实验结果证明,该系统能对自然背景下的交通标志图像达到较好的识别效果,并且具有较强的鲁棒性和广泛的适用性.

References

[1]  冷璐,黎明,杨小芹.交通警告标志定位方法研究[J].微电子学与计算机,2008,25(8):103-109.LENG Lu,LI Ming,YANG Xiao-qin.Research on location method of traffic warning sign[J].Microelectronics&Computer,2008,25(8):103-109.(in Chinese)
[2]  陈维馨,李翠华,汪哲慎.基于颜色和形状的道路交通标志检测[J].厦门大学学报:自然科学版,2007,46(5):635-640.CHEN Wei-xin,LI Cui-hua,WANG Zhe-shen.Road traffic sign detection using color and shape[J].Journal of XiamenUniversity:Natural Science,2007,46(5):635-640.(in Chinese)
[3]  朱双东,张懿,陆晓峰.三角形交通标志的智能检测方法[J].中国图象图形学报,2006,11(8):1127-1131.ZHU Shuang-dong,ZHANG Yi,LU Xiao-feng.Intelligent approach for triangle traffic sign detection[J].Journal of Imageand Graphics,2006,11(8):1127-1131.(in Chinese)
[4]  SAID A,PEARLMAN W A.A new fast and efficient image codec based on set partitioning in hierarchical trees[J].IEEETransactions on Circuits and Systems for Video Technology,1996,6(6):243-250.
[5]  SPECHT D F.Probabilistic neural networks for classification,mapping or associative memory[C]∥IEEE InternationalConference on Neural Networks,Piscataway,New Jersey,USA,IEEE,1988:525-532.
[6]  KEHTARNAVAZ N,GRISWORLD N C,KANG D S.Stop-sign recognition based on colour-shap processing[J].MachineVision and Applications,1993,(6):206-208.
[7]  杨斐,王坤明,马欣.应用BP神经网络分类器识别交通标志[J].计算机工程,2003,29(10):120-121.YANG Fei,WANG Kun-ming,MA Xin.Application of BP neural network classifier for road traffic sign recognition[J].Computer Engineering,2003,29(10):120-121.(in Chinese)
[8]  HU M K.Visual pattern recognition by moment invariants[J].IEEE Trans on Information Theory,1962,(8):179-187.
[9]  NGUWI Y Y,KOUZANI A Z.A study on automatic recognition of road signs[C]∥2006 IEEE Conference on cybernetics andintelligent systems.New York:IEEE,2006:372-377.
[10]  SANDOVAL H,HATTORI T,KITAGAWA S,et al.Angle-dependent edge detection for traffic signs recognition[C]∥Procof the IEEE IV 2000 Symp.New York:IEEE,2000:308-313.
[11]  BESSERER B,ESTABLE S,ULMER B,et al.Shape classification for traffic sign recognition[C]∥1st Int’l Workshop onIntelligent Autonomous Vehicles.Oxford,England:Pergamon Press Ltd,1993:483-488.
[12]  ESCALERA D L,MORENO L E,SALICHS M A.Road traffic sign detection and classification[J].IEEE Transactions onIndustrial Electronics,1997,44(6):848-859.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133