BAIDER A,SANDERS J.Further reduction of the Takens-Bogdanov normal form[J].Journal of Differential Equations,1992,99:205-244.
[2]
KOKUBU K,OKA H,WANG D.Linear grading function and further reduction of normal form[J].Differential Equations,1996,132:293-318.
[3]
WANG D,LI J,HUANG M H,et al.Unique normal form of Bogdanov-Takens singularities[J].Journal of DifferentialEquations,2000,163:223-238.
[4]
LI J,WANG D,ZHANG W.General forms of the simplest normal form of Bogdanov-Takens singularities[J].InternationalJournal of Dynamics of Continuous,Discrete and Impulsive Systems,2001,8(4):519-530.
[5]
LI J,TIAN Y,ZHANG W,MIAO S F.Equivalence on bifurcations of multiple limit cycles of planar vector fields of degree 5with different perturbation terms[J].Dynamics of Continuous,Discrete and Impulsive System,2008,Series B,l(14)(S5):21-24.
[6]
LI J,MIAO S F,ZHANG W.Analysis on bifurcations of multiple limit cycles for a parametrically and externally excitedmechanical system[J].Chaos,Solitons and Fractals,2007,31(4):960-976.
[7]
LI J,TIAN Y,ZHANG W,et al.Bifurcation of multiple limit cycles for a rotor-active magnetic bearings system with time-varying stiffness[J].International Journal of Bifurcation and Chaos,2008,18(3):755-778.
[8]
YU P.Simplest normal forms of hopf and generalized hopf bifurcations[J].International Journal of Bifurcation and Chaos,1999,9(10):1917-1939.