全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于BP神经网络的交通数据序列动态可预测性分析方法

Keywords: 交通工程,短时预测,可预测性分析,BP神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了进一步改善交通数据序列短时多步预测的效果,提出了交通数据序列动态可预测性分析的思想,在设计了交通数据序列动态可预测性关联数据特征指标的基础上,基于BP神经网络建立了交通数据序列动态可预测性分析方法,运用某城市快速路主线与匝道车辆检测器的实际数据对该方法进行了验证,并与不同固定预测步数条件下的预测效果进行了对比分析.结果表明,所提出的方法能对交通数据序列的可预测性进行在线分析,在保持预测精度的情况下,可最大限度地增加交通数据短时预测的步数.

References

[1]  王进,史其信,陆化普.交通流可预测性分析[J].ITS通讯,2005,7(2):11-14.WANG Jin,SHI Qi-xin,LU Hua-pu.Analysis on predictability of traffic flow[J].Intelligent Transportation System,2005,7(2):11-14.(in Chinese)
[2]  王正武,黄中祥,况爱武.短期交通流序列混沌识别及预测精度分析[J].长沙交通学院学报,2004,20(2):73-76.WANG Zheng-wu,HUANG Zhong-xiang,KUANG Ai-wu.Chaotic characteristic identification and forecasting precisionanalysis on short-term traffic flow[J].Journal of Changsha Communications University,2004,20(2):73-76.(in Chinese)
[3]  李松.交通流混沌转化现象研究[D].天津:天津大学管理学院,2006.LI Song.Study on the transition of chaos in the traffic flow[D].Tianjin:School of Management,Tianjin University,2006.(in Chinese)
[4]  姚智胜,邵春福,熊志华,等.基于主成分分析和支持向量机的道路网短时交通流量预测[J].吉林大学学报:工学版,2008,38(1):19-52.YAO Zhi-sheng,SHAO Chun-fu,XIONG Zhi-hua,et al.Short-term traffic volumes forecasting of road network based onprincipal component analysis and support vector machine[J].Journal of Jilin University:Engineering and Technology Edition,2008,38(1):19-52.(in Chinese)
[5]  黄中祥,王正武,况爱武.短期交通流可预测性分析与比较[J].土木工程学报,2004,37(2):101-104.HUANG Zhong-xiang,WANG Zheng-wu,KUANG Ai-wu.Analysis and comparison on the forecastability for short-term trafficflow[J].China Civil Engineering Journal,2004,37(2):101-104.(in Chinese)
[6]  HUANG Zhong-xiang,LI Zuo-min.The fractal dimension and fractal interval for freeway traffic flow[C]∥2000 IEEEIntelligent Transportation Systems Conference Proceedings.Dearbom,MI,USA:[s.n.],2000:1-4.
[7]  张玉梅,曲仕茹,温凯歌.交通流量的混沌特性分析及预测模型研究[J].土木工程学报,2009,42(1):119-123.ZHANG Yu-mei,QU Shi-ru,WEN Kai-ge.Chaotic property analysis and prediction model study for traffic flow time series[J].China Civil Engineering Journal,2009,42(1):119-123.(in Chinese)
[8]  李松,贺国光.高速公路交通流混沌特性研究[J].公路交通科技,2006,23(10):91-98.LI Song,HE Guo-guang.Chaos characteristics of expressway traffic flow[J].Journal of Highway and Transportation Researchand Development,2006,23(10):91-98.(in Chinese)
[9]  张勇.交通流混沌的小样本判定方法[D].天津:天津大学管理学院,2007.ZHANG Yong.Identification method of chaos in traffic flowfrom small data sets[D].Tianjin:School of Management,TianjinUniversity,2007.(in Chinese)
[10]  刘杰,孙吉贵,李红建,等.基于BP神经网络的气囊点火算法模型[J].吉林大学学报:工学版,2008,38(2):414-418.LIU Jie,SUN Ji-gui,LI Hong-jian,et al.Setup of BP ANN-based crash sensing algorithm[J].Journal of Jilin University:Engineering and Technology Edition,2008,38(2):414-418.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133