SUN J M,PHILIP S Y,FALOUTSOS C,et al.GraphScope:parameter-free mining of large time-evolving graphs[C]∥Proceedings of Knowledge Discovery in Databases:KDD.New York:ACM,2007:687-696.
[2]
CHAYANT T,TANYA B W,DAVID K.A framework for community identification in dynamic social networks[C]∥Proceedings of Knowledge Discovery in Databases:KDD.New York:ACM,2007:717-726.
[3]
ASUR S,PARHASARATHY S,UCAR D.An event-based framework for characterizing the evolutionary behavior ofinteraction graphs[C]∥Proceedings of Knowledge Discovery in Databases:KDD.New York:ACM,2007:913-921.
[4]
GUHA S,GUNOPULOS D,KOUDAS N.Correlating synchronous and asynchronous data streams[C]∥Proceedings ofKnowledge Discovery in Databases:KDD.New York:ACM,2003:529-534.
[5]
PAPADIMITRIOU S,SUN J,FALOUTSOS C.Streaming pattern discovery in multiple time-series[C]∥Proceedings of VeryLarge Data Base.New York:ACM,2005:697-708.
[6]
SUN J,TAO D,FALOUTSOS C.Beyond streams and graphs:dynamic tensor analysis[C]∥Proceedings of KnowledgeDiscovery in Databases:KDD.New York:ACM,2006:374-383.
[7]
TONG H H,PAPADIMITRIOU S.Colibri:fast mining of large static and dynamic graphs[C]∥Proceedings of KnowledgeDiscovery in Databases:KDD.New York:ACM,2008:686-694.
[8]
RISSANEN J.A universal prior for integers and estimation by minimum description length[J].Annals of Statistics,1983,11(2):416-431.
LEY Michael.The DBLP computer science bibliography:computer theory,machine learning and data mining[DB/OL].[2008-10-10].http:∥www.informatik.uni-trier.de/~ley/db/.
[11]
NEWMAN M E J,GIRVAN M.Finding and evaluating community structure in networks[J].Physical Review E,2004,69(2):56-68.
[12]
PALLA G,DERENYI I,FARKAS I,et al.Uncovering the overlapping community structure of complex networks in nature andsociety[J].Nature,2005,435:814-818.
[13]
WAN L,LIAO J X,ZHU X M.CDPM:finding and evaluating community structure in social networks[C]∥Proceedings ofAdvanced Data Mining Applications.Berlin:Springer,2008:620-627.
[14]
STEVE G.An algorithm to find overlapping community structure in networks[C]∥Proceedings of Knowledge Discovery inDatabases:PKDD.Berlin:Springer,2007:593-600.
[15]
NEWMAN M E J.Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,69(6):066133.
[16]
DHILLON S,MALLELA S,MODHA D S.Information-theoretic co-clustering[C]∥Proceedings of Knowledge Discovery inDatabases:KDD.New York:ACM,2003:89-98.
[17]
CHAKRABARTI D,PAPADIMITRIOU S,MODHA D S,et al.Fully automatic cross-associations[C]∥Proceedings ofKnowledge Discovery in Databases:KDD.New York:ACM,2004:79-88.
[18]
NOBLE C C,COOK D J.Graph-based anomaly detection[C]∥Proceedings of Knowledge Discovery in Databases:KDD.New York:ACM,2003:631-636.
[19]
KEOGH E,LONARDI S,RATANAMAHATANA C A.Towards parameter-free data mining[C]∥Proceedings of KnowledgeDiscovery in Databases:KDD.New York:ACM,2004:206-215.
[20]
NING H,XU W,CHI Y,et al.Incremental spectral clustering with application to monitoring of evolving blog communities[C]∥Proceedings of SIAM International Conference on Data Mining.Philadelphia:SIAM,2007:261-271.