全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空调系统运行负荷GRNN预测模型的应用研究

Keywords: 负荷预测,运行负荷,冷冻水温度,广义回归神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

以2座五星级酒店为研究对象,通过实测数据分析了运行负荷的主要影响因素,确定冷冻水温度对运行负荷的影响作用,将其引入到空调系统运行负荷的预测研究中.应用广义回归神经网络(GRNN)理论,建立了一种动态多点输出负荷模型,提出了5种输入方案,使用2座酒店的实际数据集分别进行验证.研究结果表明:冷冻水温度对实际运行负荷的预测精度有重要影响,可显著提高GRNN负荷模型的预测准确性,以前1日24h历史负荷、预测日天气预报以及冷冻水设定温度为输入、以预测日24h逐时负荷为输出的GRNN负荷模型,建模简单,预测性能较好,适用于实际工程应用.

References

[1]  石磊,王锦,王智伟,等.预测参数的选择与建筑物逐时冷负荷的预测[J].西安科技学院学报,2003,23(1):26-29.SHI Lei,WANG Jin,WANG Zhi-wei,et al.Selection ofprediction parameters and prediction of hourly cooling loadof building[J].Journal of Xi'an University of Science andTechnology,2003,23(1):26-29.(in Chinese)
[2]  李海军,何大四.泛化能力改善的神经网络方法在空调负荷预测中的应用[J].建筑科学,2009,25(6):90-94.LI Hai-jun,HE Da-si.Application of artificial neuralnetwork model to improve the generalization ability in airconditioning load prediction[J].Building Science,2009,25(6):90-94.(in Chinese)
[3]  KWOK S K,LEE W M.A study of the importance ofoccupancy to building cooling load in prediction byintelligent approach[J].Energy Conversion andManagement,2011,52(7):2555-2564.
[4]  吴杰.冰蓄冷空调系统负荷预测模型和系统优化控制研究[D].杭州:浙江大学机械与能源工程学院,2002.WU Jie.Study on load prediction model and optimalcontrol of icestorage system[D].Hangzhou:Institute ofRefrigeration and Cryogenic Engineer,ZhejiangUniversity,2002.(in Chinese)
[5]  张小芬,吴伟,张颖,等.卷烟厂空调系统提高冷冻水供水温度的实验测试[J].设备与仪器,2012(7):24-28.ZHANG Xiao-fen,WU Wei,ZHANG Ying,et al.Test onraising temperature of chilled water supply in airconditioning system of cigarette factory[J].Equipment&Apparatus,2012(7):24-28.(in Chinese)
[6]  殷帅,丁云飞,廖云丹.热湿地区办公建筑空调冷冻水变温调节分析[J].制冷与空调,2012,26(1):75-79.YIN Shuai,DING Yun-fei,LIAO Yun-dan.Analysis ofvariable chilled water temperature adjustment in the officebuilding in hot-humid area[J].Refrigeration and AirConditioning,2012,26(1):75-79.(in Chinese)
[7]  徐今强,肖睿,董凯军,等.基于GRNN的冰蓄冷空调逐时冷负荷预测[J].微计算机信息,2009(1):268-270.XU Jin-qiang,XIAO Rui,DONG Kai-jun,et al.GRNNbased hourly cooling load prediction of ice storage airconditioning[J].Microcomputer Information,2009(1):268-270.(in Chinese)
[8]  BEN-NAKHI A E,MAHMOUD M A.Cooling loadprediction for buildings using generalregression neuralnetworks[J].Energy Conversion and Management,2004,45(13/14):2127-2141.
[9]  SPECHT D F.The general regression neural network-rediscovered[J].Neural Networks,1993,6(7):1033-1034.
[10]  KAWASHIMA M,DORGAN C E,MITCHELL J W.Hourly thermal load prediction for the next 24 hours byARIMA,EWMA,LR,and a neural network[J].ASHARE Transactions,1995,101(1):186-200.
[11]  何大四,张旭,刘加平.常用空调负荷预测方法分析比较[J].西安建筑科技大学学报:自然科学版,2006,38(1):125-129.HE Da-si,ZHANG Xu,LIU Jia-ping.Comparativeanalysis of air conditioning load prediction methods[J].Journal of Xi'an University of Architecture and Technology:Natural Science,2006,38(1):125-129.(in Chinese)
[12]  郑慧凡,白静,李安桂.BP神经网络在建筑物空调负荷预测中的应用评述[J].计算机应用与软件,2007,24(6):103-105.ZHENG Hui-fan,BAI Jing,LI An-gui.Application reviewof BP neutral network for prediction of cooling load in airconditioning for buildings[J].Computer Applications andSoftware,2007,24(6):103-105.(in Chinese)
[13]  LI Q,MENG Q L,CAI J J,et al.Predicting hourlycooling load in the building:a comparison of support vectormachine and different artificial neural networks[J].Energy Conversion and Management,2009,50(1):90-96.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133