全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

U(so(8,C))向量表示的范畴化

Keywords: 向量表示,范畴化,BGG范畴,投射函子

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了范畴化U(so(8,))向量表示的n次张量积,定义了一般线性李代数gln的伯恩斯坦-盖尔芬德-盖尔芬德(Bernstein-Gelfand-Gelfand,BGG)范畴O的若干子范畴,这些子范畴Grothendieck群的复化范畴化了D4型李代数包络代数向量表示n次张量积的底空间;定义了BGG范畴O上的一系列投射函子用于范畴化U(so(8,))在张量积上的作用;得到hi(1≤i≤4)可由一对函子(H+i,H-i)(1≤i≤4)范畴化,ei、fi(1≤i≤3)分别由εi、Fi(1≤i≤3)范畴化,e4、f4分别由一对函子(ε+4,ε-4)(F+4,F-4)范畴化.

References

[1]  STROPPEL C. Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors[J]. Duke Math J, 2005, 126(3): 547-596.
[2]  SUSSAN J. Category O and slk -link invariants[OL].[2012-09-16]. arXiv: math. QA/0701045.
[3]  FRENKEL I, STROPPEL C, SUSSAN J. A categorification of finite dimensional irreducible representations of quantum and their tensor product [J]. Selecta Math: N S, 2006, 12(3/4): 379-431.
[4]  MAZORCHUK V, STROPPEL C. Categorification of(induced) cell modules and the rough structure of generalised Verma modules[J]. Adv Math, 2008, 219(4): 1363-1426.
[5]  MAZORCHUK V, STROPPEL C. Categorification of Wedder-burn's basis for C[Sn ][J]. Arch Math: Basel, 2008, 91(1): 1-11.
[6]  CRANE L, FRENKEL I. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases[J]. Topology and Physics J Math Phys, 1994, 35(10): 5136-5154.
[7]  KHOVANOV M, MAZORCHUK V, STROPPEL C. A brief review of abelian categorifications[J]. Theory Appl Categ, 2009, 22: 479-508.
[8]  KHOVANOV M, MAZORCHUK V, STROPPEL C. A categori-fication of integral Specht modules [ J]. Amer Math Soc, 2008, 136(4): 1163-1169.
[9]  BERSTEIN J N, FRENKEL S I, KHOVANOV M. A catego-rification of the temperley-lieb algebra and schur quotients of U(sl2) via projective and Zukerman functors [J]. Selecta Math: N S, 1999, 5(2): 199-241.
[10]  XU Yong-jun, YANG Shi-lin. A categorification of the spin representation of U(so(7; C)) via projective functors [J]. Comm Algebra, 2013, 41(10): 3868-3888.
[11]  BERNSTEIN J N, GELFAND S I. Tensor products of finite and infinite dimensional representations of semisimple Lie algebras[J]. Compositio Math, 1980, 41(2): 245-285.
[12]  HUMPHREYS J E. Representations of semisimple Lie algebras in the BGG category [M]. Rhode Island: Amer Math Soc, 2008: 1-222.
[13]  HONG J, KANG S J. Introduction to quantum groups and crystal bases[M]. New York: Amer Math Soc, 2002:197-203.
[14]  BERNSTEIN J, GELFAND I, GELFAND S. Category of g-modules[J]. Funkcional Anali Prilozen, 1976, 10(2):1-8.
[15]  CRANE L. Clock and category: is quantum gravity algebraic[J]. J Math Phys, 1995, 36(11): 6180-6193.
[16]  DIXMIER J. Enveloping algebras[M]. New York: Amer Math Soc, 1996: 66-70.
[17]  MAZORCHUK V. Lectures on algebraic categorification [M]. Zurich: Euro Math Soc, 2012: 1-100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133