全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于MAP和RF的无监督SAR图像变化检测

Keywords: 形态学属性断面,SAR图像,变化检测,随机森林,阈值法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于形态学属性断面(MAP)和随机森林(RF)分类器,提出了无监督合成孔径雷达(SAR)图像变化检测方法.首先,利用MAP算法提取差异图像的几何结构特征,构造深入描述图像结构化信息的特征向量空间;然后,在结合阈值法和偏移因子自动选取训练样本的基础上,用RF分类器在多维特征空间中对图像进行变化与否的判别;最后,利用数学形态学方法对虚警进行滤除.实验结果表明,与传统的基于阈值的变化检测方法相比,该方法不仅能很好地检测出变化区域,而且具有更高的检测精度.

References

[1]  MAS J F. Monitoring land-cover changes: a comparison of change detection techniques [J]. International Journal of Remote Sensing, 1999, 20(1): 139-152.
[2]  FRANSSON J E S, WALTER F, BLENNOW K, et al. Detection of storm-damaged forested areas using airborne CARABAS-VHF SAR image data [J]. IEEE Trans on Geoscience and Remote Sensing, 2002, 40(10): 2170-2175.
[3]  RIDD M K, LIU J J. A comparison of four algorithms for change detection in an urban environment [J]. Remote Sensing Environment, 1998, 63(2): 95-100.
[4]  KITTLER J, ILLINGWORTH J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47.
[5]  BAZI Y, BRUZZONE L, MELGANI F. An unsupervised approachbased on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J]. IEEE Trans on Geoscience and Remote Sensing,2005, 43(4): 874-887.
[6]  DALLAMURA M, BENEDIKTSSON J A, RNWASKE B,et al. Extended profiles with morphological attribute filters for the analysis of hyperspectral data [J]. International Journal of Remote Sensing, 2010, 31(22): 5975-5991.
[7]  BREIMAN L. Random forests [ J]. Machine Learning, 2001, 45(1): 5-32.
[8]  WHITE R G. Change detection in SAR imagery [ J]. International Journal of Remote Sensing, 1991, 12: 339-360.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133