全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于质量相关的间歇过程故障监测及故障变量追溯

Keywords: 间歇过程,多向核熵偏最小二乘,高阶统计量,故障监测,故障变量追溯

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对多向核熵偏最小二乘(multi-waykernelentropypartialleastsquares,MKEPLS)利用的是数据的一阶和二阶统计特性未考虑数据的高阶统计特性,在进行特征提取时会造成有用数据丢失的问题,提出基于高阶统计量的多向核熵偏最小二乘方法(higherorderstatisticsmulti-waykernelentropypartialleastsquares,HOS-MKEPLS).首先,通过构造样本的高阶统计量将数据从原始的数据空间映射到高阶统计量样本空间.然后,再建立MKEPLS监控模型进行质量相关的故障监控,当监控到有故障发生时进行故障变量的追溯.最后,将该方法应用到工业青霉素发酵过程的监测中并与MKEPLS进行比较.结果表明:该方法具有更好的监控和故障识别性能.

References

[1]  常鹏, 王普, 高学金, 等. 基于核熵投影技术的多阶段间歇过程监测研究[J]. 仪器仪表学报, 2014, 35(7):1654-1661.
[2]  CHANG Peng, WANG Pu, GAO Xue-jin, et al. Research on batch process monitoring based on multi-stage kernel pattern entropy projection technology[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1654-1661. (in Chinese)
[3]  常鹏, 王普, 高学金. 基于核熵投影技术的微生物制药生产过程监测[J]. 信息与控制, 2014, 43(4): 490-494.
[4]  CHANG Peng, WANG Pu, GAO Xue-jin. Microbial pharmaceutical process monitoring based on projection kernel entropy component[J]. Information and Control,2014, 43(4): 490-494. (in Chinese)
[5]  齐咏生, 王普, 高学金, 等. 基于多阶段动态PCA 的发酵过程故障监测[J]. 北京工业大学学报, 2012, 38(10): 1474-1481.
[6]  QI Yong-sheng, WANG Pu, GAO Xue-jin, et al. Fault detection for fermentation process based on multiphase dynamic PCA [ J ]. Journal of Beijing University of Technology, 2012, 38(10): 1474-1481. (in Chinese)
[7]  CHEN J H, WANG W Y. Performance monitoring of MPCA based control for multivariable batch control processes[ J]. Taiwan Institute of Chemical Engineers, 2010, 41(4): 465-474.
[8]  DARWISH H W, ATTIA M I, ABDELHAMMEED A S, et al. Comparative ANNs with different input layers and GA- PLS study for simultaneous spectrofluorimetric determination of melatonin and pyridoxine HCl in the presence of melatonin's main impurity [ J]. Molecules,
[9]  2013, 18(1): 974-996.
[10]  GEERT G, JEF V, JAN F. Discriminating between critical and noncritical disturbances in ( Bio) chemical bach processes using multi-model fault detection and end-quality prediction [ J ]. Industrial and Engineering Chemistry Research, 2012, 51(1): 1237-1238.
[11]  NAES T, TOMIC O. Multi-block regression based on combination so for thogonalisation, PLS regressionand canonical correlation analysis [ J]. Chemometrics and Intelligent Laboratory Systems, 2013, 124: 32-42.
[12]  CHOI S W, LEE I B. Mutilblock PLS based localized process diagnosis[J]. Journal of Process Control, 2005, 3(1): 295-306.
[13]  MORI J C, YU J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach[J]. Journal of Process Control, 2014, 24 (1): 57-71.
[14]  ZHANG Y W, HU Z Y. Multivariate process monitoring and analysis based on multi-scale KPLS[J]. Chemical Engineering Research & Design, 2011, 89(12): 2667-2678.
[15]  ZHANG Y W, AN J Y, LI Z M. Modeling and monitoring for handling nonlinear dynamic processes [J]. Information Sciences, Chemical Engineer Science, 2013, 235(20): 97-105.
[16]  ZHANG Y W, TENG Y D, ZHANG Y. Complex process quality prediction using modifies kernel partial least squares[J]. Chemical Engineer Science, 2010, 65(1):2153-2158.
[17]  ZHANG X, YAN W, SHAO H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares[J] Industrial and Engineering Chemistry Research, 2008, 47(1): 1120-1131.
[18]  常鹏, 王普, 高学金. 基于多向核熵偏最小二乘的间歇过程监测及质量预测[J]. 北京工业大学学报,2014, 40(6): 851-856.
[19]  CHANG Peng, WANG Pu, GAO Xue-jin. Batch process monitoring and quality prediction based on multi-way kernel entropy PLS[J]. Journal of Beijing Universtiry of Technology, 2014, 40(6): 851-856. (in Chinese)
[20]  常鹏, 王普, 高学金, 等. 基于统计量模式分析的MKPLS 间歇过程监控与质量预报[J]. 仪器仪表学报, 2014, 35(6): 1409-1416.
[21]  CHANG Peng, WANG Pu, GAO Xue-jin, et al. Batch process monitroing and quality prediction based on statistics pattern analysis and MKPLS [ J ]. Chinese Journal of Scientific Instrument, 2014, 35 (6): 1409-
[22]  1416. (in Chinese)
[23]  WANG J, HE Q. Multivariate statistical process monitoring based on statistics pattern analysis [ J ]. Industrial Engineering Chemical Research, 2010, 49(1): 7858-7869
[24]  HE Q, WANG J. Statistics pattern analysis: a new process monitoring framework and its application to semiconductor batch processes[J]. American Institute of Chemical Engineers, 2011, 57(1): 107-121.
[25]  PENG K X, ZHANG K, LI G, et al. Contribution rate plot for nonlinear quality related fault diagnosis with application to the hot strip mill process [ J]. Control Engineering Practice, 2013, 21 (4): 360-369.
[26]  AGUADO D, FERRER A, FERRER J, et al. Multivariate SPC of a sequencing batch reactor for wastewater treatment[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 82-93.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133