全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超声波灭活水中微生物试验研究

Keywords: 超声波,灭活,空化强度,羟基自由基,掩蔽剂

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探讨超声波灭菌作用机制,进一步为超声波用于净水厂污泥无害化处理提供技术支持,试验采用实验室模拟水样,研究了超声功率(250~1500W)、频率(25kHz和40kHz)对大肠菌群灭活效果、超声空化强度和羟基自由基产量的影响.结果表明:相同时间和频率下,在超声功率为250~1500W时,大肠菌群灭活率随着功率的增大先逐渐上升,达到1250W后,灭活效果变化不明显;相同时间和功率条件下,40kHz灭活效果优于25kHz.超声空化强度和羟基自由基的产量与灭活率规律相似,超声灭活率随着超声过程中超声空化强度和羟基自由基产量的增大而增大.通过投加自由基掩蔽剂碳酸氢钠(NaHCO3)掩蔽自由基氧化作用判定羟基自由基在超声灭菌过程中的确产生了灭活作用,但作用比较弱.

References

[1]  SIVASANKAR T, MOHOLKAR V S. Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics[J]. Ultrasonics Sonochemistry, 2009, 16(6): 769-781.
[2]  GOLASH N, GOGATE P R. Degradation of dichlorvos containing wastewaters using sonochemical reactors [J]. Ultrasonics Sonochemistry, 2012, 19(5): 1051-1060.
[3]  ASHOKKUMAR M, VU T, GRIESER F, et al. Ultrasonic treatment of cryptosporidium oocysts[J]. Water Science and Technology, 2003, 47(3): 173-177.
[4]  周红生, 许小芳, 王欢, 等. 超声波灭菌技术的研究进展[J]. 声学技术, 2010, 29(5): 498-502.
[5]  ZHOU Hong-sheng, XU Xiao-fang, WANG Huan, et al. Research progress on ultrasonic sterilization technique [J]. Technical Acoustics, 2010, 29(5): 498-502. (in Chinese)
[6]  马奭文, 王鲜艳, 李娟, 等. 超声波杀菌机理及其影响因素[J]. 西安邮电学院学报, 2011, 16(增刊2): 39-41.
[7]  MA Shi-wen, WANG Xian-yan, LI Juan, et al. Ultrasonic sterilization mechanism and its influencing factors[J]. Journal of Xi爷an University of Post and Technology, 2011, 16(Suppl 2): 39-41. (in Chinese)
[8]  刘岩, 师存杰. 声化学反应器基础理论的研究进展[J]. 化学通报, 2013, 76(11): 1025-1028.
[9]  LIU Yan, SHI Cun-jie. Advances of the basic theories on sonochemical reactor[J]. Chemistry Online, 2013, 76(11): 1025-1028. (in Chinese)
[10]  KODA S, MIYAMOTO M, TOMA M, et al. Inactivation of escherichia coli and streptococcus mutans by ultrasound at 500 kHz [J]. Ultrasonics Sonochemistry, 2009, 16(5): 655-659.
[11]  COLLIS J, MANASSEH R, LIOVIC P, et al. Cavitation microstreaming and stress fields created by microbubbles[J]. Ultrasonics, 2010, 50(2): 273-279.
[12]  WU J, NYBORG W L. Ultrasound, cavitation bubbles and their interaction with cells [J]. Advanced Drug Delivery Reviews, 2008, 60(10): 1103-1116.
[13]  OYANE I, TAKEDA T, ODA Y, et al. Comparison between the effects of ultrasound and γ-rays on the inactivation of Saccharomyces cerevisiae: analysis of cell membrane permeability and DNA or RNA synthesis by flow cytometry[J]. Ultrasonics Sonochemistry, 2009, 16
[14]  (4): 532-536.
[15]  洪喆, 付朝阳. 超声辐照水体系下羟基自由基的检测[J]. 理化检验—化学分册, 2012, 48(5): 524-525.
[16]  HONG Zhe, FU Chao-yang. Determination of hydroxyl free radical in aqueous solution by ultrasonic radiation [J]. Physical Testing and Chemical Analysis Part B: Chemical Analgsis, 2012, 48 ( 5 ): 524-525. ( in Chinese)
[17]  JANA A K, CHATTERJEE S N. Estimation of hydroxyl free radicals produced by ultrasound in Fricke solution used as a chemical dosimeter [J]. Ultrasonics Sonochemistry, 1995, 2(2): 87-91.
[18]  闫怡新, 刘红. 低强度超声波强化污水生物处理机制[J]. 环境科学, 2006, 27(4): 647-650.
[19]  YAN Yi-xin, LIU Hong. Mechanism of low intensity ultrasound enhanced biological treatment of waste water [J]. Environment Science, 2006, 27(4): 647-650. (in Chinese)
[20]  冯若, 朱昌平, 赵逸云, 等. 双频正交辐照的声化学效应研究[J]. 科学通报, 1997, 42(9): 925-928.
[21]  FENG Ruo, ZHU Chang-ping, ZHAO Yi-yun, et al. Dual-frequency orthogonal sound radiation chemistry research[J]. Chinese Science Bulletin, 1997, 42(9): 925-928. (in Chinese)
[22]  ASHOKKUMAR M. The characterization of acoustic cavitation bubbles—an overview [J]. Ultrasonics Sonochemistry, 2011, 18(4): 864-872.
[23]  康永, 郑莉, 邵世权. 超声波清洗技术研究进展[J]. 清洗世界, 2012, 28(4): 12-16.
[24]  KANG Yong, ZHENG Li, SHAO Shi-quan. Research progress of the ultrasonic cleaning technology [J]. Cleaning World, 2012, 28(4): 12-16. (in Chinese)
[25]  HENGLEIN A. Sonochemistry: historical developments and modern aspects [J]. Ultrasonics, 1987, 25(1): 6-16.
[26]  钱盛友, 王鸿樟, 孙福成. 声流现象的研究及其应用[J]. 应用声学, 1997, 16(6): 38-42.
[27]  QIAN Sheng-you, WANG Hong-zhang, SUN Fu-cheng. Acoustic streaming and its applications [J]. Applied Acoustics, 1997, 16(6): 38-42. (in Chinese)
[28]  赵松. 低浊度净水厂运行现状分析与建议[D]. 哈尔滨: 哈尔滨工业大学市政环境工程学院, 2013.
[29]  ZHAO Song. Low turbidty water treatment plants operarion situation analysis and recommendations [D]. Harbin: School of Municipal and Environmental Engineering, Harbin Institute of Technology, 2013. (in Chinese)
[30]  崔福义, 左金龙, 赵志伟, 等. 饮用水中贾第鞭毛虫和隐孢子虫研究进展[J]. 哈尔滨工业大学学报, 2006, 38(9): 1487-1491.
[31]  CUI Fu-yi, ZUO Jin-long, ZHAO Zhi-wei, et al. Review of giardia and cryptosporidium in drinking water [J]. Journal of Harbin Institute of Technology, 2006, 38(9): 1487-1491. (in Chinese)
[32]  MCCORMICK N J, PORTER M, WALSH M E. Disinfection by-products in filter backwash water: implications to water quality in recycle designs[J]. Water Research, 2010, 44(15): 4581-4589.
[33]  张光明, 常爱敏, 张盼月. 超声波水处理技术[M]. 北京: 中国建筑工业出版社, 2006: 3-7.
[34]  张骥. 国内外超声波用于污泥减量的比较研究[J]. 广州环境, 2011, 26(1): 1-4.
[35]  ZHANG Ji. Comparison of ultrasonic sludge reduction between domestic and foreign[J]. Guangzhou Environment Science, 2011, 26(1): 1-4. (in Chinese)
[36]  蒋建国, 张妍, 张群芳, 等. 超声波对污泥破解及改善其厌氧消化效果的研究[J]. 环境科学, 2008, 29(10): 2815-2819.
[37]  JIANG Jian-guo, ZHANG Yan, ZHANG Qun-fang, et al. Improvement of disintegration and anaerobic digestion for sewage sludge with ultrasonic generator[J]. EnvironmentScience, 2008, 29(10): 2815-2819. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133