全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求根问题的量子计算算法

Keywords: 量子算法,求根问题,Shor算法,Grover算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

求根问题是计算数论中的一个困难性问题,为了提高求根问题的求解效率和扩大量子计算的应用范围,对求根问题进行了量子算法的分析.在两大量子算法Shor算法和Grover算法的基础上,提出了2种解决求根问题的量子算法RF-Shor算法和RF-Grover算法.经分析,RF-Shor算法需要多项式规模的量子门资源,能以接近1的概率求出求根问题的所有解.在没有使用任何可提高搜索效率的经典策略的情况下,RF-Grover算法能在O(M/k))步内以至少1/2的概率求出求根问题k个解中的一个解.

References

[1]  夏培肃. 量子计算[J]. 计算机研究与发展, 2001, 38(10): 1153-1171.
[2]  XIA Pei-su. Quantum computing[J]. Journal of Computer Research and Development, 2001, 38(10): 1153-1171. (in Chinese)
[3]  FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6/7): 467-488.
[4]  DEUTSCH D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society London, 1985, A400: 97-117.
[5]  SHOR P W. Polynomial-time algorithms for prime factorizati-on and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
[6]  GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceeding of 28th ACM Symposium on Theory of Computation(STOC'96). New York: ACM, 1996: 212-219.
[7]  吕欣, 冯登国. 背包问题的量子算法分析[J]. 北京航空航天大学学报, 2004, 30(11): 1088-1091.
[8]  Lü Xin, FENG Deng-guo. Quantum algorithm analysis of knapsack problem [J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30 (11): 1088-1091. (in Chinese)
[9]  WANG Hong-fu, ZHANG Shou, ZHAO Yong-fang, et al. Quantum mechanical algorithm for solving quadratic residue equation[J]. International Journal of Theoretical Physics, 2009, 48: 3262-3267.
[10]  RABIN M. Digitalized sigratures and public-key encryptions as intractable as factorization[R]. MA: MIT, 1979.
[11]  PASCAL P, DAVID P. Efficientpublic-pey cryptosystems provably secure against active adversaries[C]//Advances in Cryptology-ASIACRYPT'99. London: Springer-Verlag, 1999.
[12]  SU Sheng-hui, Lü Shu-wang. To solve the high degree congruence xn≡a (mod p) in GF(p)[C]//Proc of Int Conference on Computation Intelligence and Security. New Jersey: IEEE, 2007: 672-676.
[13]  YAN Song-yuan. Number theory for computing [M]. Berlin: Springer-Verlag, 2002: 225-228.
[14]  NIELSEN M A, CHUANG I L. Quantum computation and quantum information [M]. Cambridge: Cambridge University Press, 2000: 171-202.
[15]  GORDON D M. Discrete logarithms in GF(p) using the number field sieve[J]. Society for Industrial and Applied Mathematics Journal on Discrete Mathematics, 1993, 6(1): 124-138.
[16]  潘承洞, 潘承彪. 初等数论[M]. 2 版. 北京: 北京大学出版社, 2003: 16-21.
[17]  BRASSARD G, HOYER P, TAPP A. Quantum counting[C] //Proceedings of 25th International Colloquium Automata Language and Programming ( ICALP'98 ). Berlin: Springer-Verlag, 1998, 1443: 820-831.
[18]  BENNETT C H. Time/ space trade-offs for reversible computaion[J]. SIAM J Comput, 1989, 18: 766-776.
[19]  SCHONHAGE A, STRASSEN V. Schnelle multiplication grosser zahlen[J]. Computing, 1971, 7 (3/4): 281-292.
[20]  付向群, 鲍皖苏, 周淳, 等. 具有高概率的整数分解量子算法[J]. 电子学报, 2011, 39(1): 36-39.
[21]  FU Xiang-qun, BAO Wan-su, ZHOU Chun, et al. Quantum algorithm for prime factorization with high probability[J]. Acta Electronica Sinica, 2011, 39(1): 36-39. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133