全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

紫外辐照法制备Ag纳米颗粒用于石墨烯表面缺陷的标记与修复

Keywords: 石墨烯,Ag纳米颗粒,缺陷标记,缺陷修复,紫外辐照

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了标记化学法制备石墨烯时引入的缺陷,采用紫外辐照的方法,利用Ag颗粒与含氧官能团之间的相互作用实现了对缺陷的定量标记.结果表明该方法能提供石墨烯表面缺陷的数量和分布信息.另外Ag纳米颗粒对石墨烯缺陷有修复作用,有利于提高石墨烯的导电能力.

References

[1]  ZHANG Z, XU F, YANG W, et al. A facile one-pot method to high-quality Ag- graphene composite nanosheets for efficient surface-enhanced Raman scattering [J]. Chemical Communications, 2011, 47(22): 6440-6442.
[2]  LU G, MAO S, PARK S, et al. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals[J]. Nano Research, 2009, 2(3): 192-200.
[3]  JASUJA K, BERRY V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement[J]. ACS Nano, 2009, 3(8): 2358-2366.
[4]  WANG X, YOU H, LIU F, et al. Large-scale synthesis of few-layered graphene using CVD [ J]. Chemical Vapor Deposition, 2009, 15(1/2/3): 53-56.
[5]  CHOUCAIR M, THORDARSON P, STRIDE J A. Gram-scale production of graphene based on solvothermal synthesis and sonication [J]. Nat Nanotechnol, 2009, 4: 30-33.
[6]  CUI A L, FENG G X, ZHAO Y F, et al. Synthesis and separation of mellitic acid and graphite oxide colloid through electrochemical oxidation of graphite in deionized water [J]. Electrochemistry Communications, 2009, 11(2): 409-412.
[7]  DING Y H, ZHANG P, REN H M, et al. Preparation of graphene/ TiO2 anode materials for lithium-ion batteries by a novel precipitation method [J]. Materials Research Bulletin, 2011, 46(12): 2403-2407.
[8]  DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide [J]. Chem Soc Rev, 2010, 39(1): 228-240.
[9]  LOH K P, BAO Q, ANG P K, YANG J. The chemistry of graphene [J]. J Mater Chem, 2010, 20 (12): 2277-2289.
[10]  徐秀娟, 秦金贵, 李振. 石墨烯研究进展[J]. 化学进展, 2009, 21(12): 2559-2567.
[11]  XU Xiu-juan, QIN Jin-gui, LI Zhen. Research advances of graphene [J]. Progress in Chemistry, 2009, 21(12): 2559-2567. (in Chinese)
[12]  GAO X, JANG J, NAGASE S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design [J]. The Journal of Physical Chemistry C, 2009, 114(2): 832-842.
[13]  SHIN H J, KIM K K, BENAYAD A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance [J]. Adv Funct Mater, 2009, 19(12): 1987-1992.
[14]  FERNANDEZ鄄MERINO M J, GUARDIA L, PAREDES J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions [J]. The Journal of Physical Chemistry C, 2010, 114(14): 6426-6432.
[15]  CHEN D, LI L, GUO L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid [J]. Nanotechnology, 2011, 22 ( 32 ):325601.
[16]  ZHOU T, CHEN F, LIU K, et al. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite [J]. Nanotechnology, 2010, 21 (4): 045704.
[17]  CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves [J]. Carbon, 2010, 48(4): 1146- 1152.
[18]  GUARDIA L, VILLAR鄄RODIL S, PAREDES J I, et al. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene- metal nanoparticle hybrids and dye degradation [J]. Carbon, 2012, 50(3): 1014-1024.
[19]  WANG Z, ZHOU X, ZHANG J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14071-14075.
[20]  GUO H L, WANG X F, QIAN Q Y, et al. A green approach to the synthesis of graphene nanosheets [J]. ACS Nano, 2009, 3(9): 2653-2659.
[21]  DING Y, JIANG Y, XU F, et al. Preparation of nano-structured LiFePO4 / graphene composites by co-precipitation method [J]. Electrochemistry Communications, 2010, 12(1): 10-13.
[22]  ZHU C, GUO S, FANG Y, DONG S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets [J]. ACS Nano, 2010, 4 (4):2429-2437.
[23]  BAGRI A, MATTEVI C, ACIK M, et al. Structural evolution during the reduction of chemically derived graphene oxide [J]. Nature Chemistry, 2010, 2: 581-587.
[24]  SON W K, YOUK J H, LEE T S, et al. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles [J]. Macromolecular Rapid Communications, 2004, 25(18): 1632-1637.
[25]  SON W K, YOUK J H, PARK W H. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles[J]. Carbohydrate Polymers, 2006, 65(4): 430-434.
[26]  LI Z, HUANG H, SHANG T, et al. Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres [J]. Nanotechnology, 2006, 17(3): 917.
[27]  侯丽, 徐国财, 汪厚安, 等. 紫外光辐照双原位同步合成纳米Ag/ PVP 复合物的结构特征[J]. 高分子材料科学与工程, 2009, 25(12): 66-68.
[28]  HOU Li, XU Guo-cai, WANG Hou-an, et al. Constructure characterization of nano-silver/ PVP composites synthesized Bi-in Situ UV irradiation [J]. Polymer Materials Science and Engineering, 2009, 25(12): 66-68. (in Chinese)
[29]  PASRICHA R, GUPTA S, SRIVASTAVA A K. A facile and novel synthesis of Ag-graphene-based nanocomposites[J]. Small, 2009, 5(20): 2253.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133