全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带PN结的高维半导体漂流扩散方程组的拟中性极限

Keywords: PN结,高维半导体,拟中性极限,漂流扩散方程组,相对entrnpy函数方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究带PN结的高维半导体漂流扩散方程组的拟中性极限问题,使用能量方法和entropy方法在索伯列夫范数意义下严格证明了具有好边界的变号doping轮廓情形下的PN结高维半导体漂流方程组的拟中性极限。

References

[1]  MARKOWICHP A, RINGHOFER C, SCHMEISER C. Semiconductors Equations[M]. New York: Springer-Verlag, 1990.
[2]  SHOCKLEY W. The theory of p-n junctions in semiconductors and p-n junction transistors[J]. Bell Syst Tech J, 1949,28: 435-489.
[3]  SITENKO A, MALNEY V. Plasma Physics Theory[M]. London: Champman & Hall, 1995.
[4]  ROOSBROECK W V. Theory of the flow of electrons and holes in Germanium and other semiconductors[J]. Bell Syst Tech J, 1950,29:560-607.
[5]  BRENIER Y. Converence of the Vlasov-Poisson system to the incompressible Euler equations[J]. Commun Partial Diff Eqs, 2000,25(3,4):737-754.
[6]  MASMOUDI N. From Vlasov-Poisson system to the incompressible Euler system[J]. Comm Partial Differential Equations, 2001,26(9,10):1913-1928.
[7]  SCHMEISER C, WANG S. Quasineutral limit of the drift-diffusion model for semiconductors with general initial data[J]. Math Modeling Method Appl Sci,2003,13(4) :463-470.
[8]  WANG S. Quasineutral limit of Euler-Poisson system with and without viscosity[J]. Commun P D E, 2004,29(3,4):419- 456.
[9]  SZE S M. Physics of Semiconductor Devices[M]. New York: Wiley-Interscience, 1969.
[10]  WANG S, XIN Z P, MARKOWICH P A. Quasineutral limit of the drift diffusion models for semiconductors: The case of general sign-changing doping profile[J]. SIAM J Math Anal(to appear).
[11]  GAJEWSKI H. On existence, uniqueness and asymptotic behavirour of solutions of the basic equations for carrier transport in semiconductors[J]. ZAMM, 1985,65(2):101-108.
[12]  GAJEWSKI H, GROGER K. On the basic equations for carrier transport in semiconductors[J]. J Math Anal Appl, 1986, 113(1):12-35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133