全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

相空间Noether恒等式和Dirac猜想

Keywords: 约束Hamilton系统,Dirac猜想,规范生成元,Noether恒等式

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于含第一类和第二类约束Hamilton系统的运动方程,重新分析了Dirac猜想的提出.在约束乘子是时间和正则变量的函数,以及规范生成元的组合系数为时间、正则变量和约束乘子的函数一般情况下,建立了扩展正则Noether恒等式(ECNI).最后从相空间正则Noether恒等式(CNI)和ECNI出发讨论了一个Dirac猜想反例,说明在此情形下Dirac猜想仍然失效.

References

[1]  DIRAC P A M. Lecture on Quantum Mechanics[M]. New York: Yeshiva University Press, 1964.
[2]  WANG An-min, RUAN Tu-nan. Extension of the Dirac-Bergmann theory of constrained system[J]. Phys Rev, 1996, A54: 57-80.
[3]  李子平.约束哈密顿系统及其对称性质[M].北京:北京工业大学出版社,1999. LI Zi-ping. Constrained Hamiltonian Systems and Their Symmetry Properties[M]. Beijing: Beijing University of Technology, 1999. (in Chinese)
[4]  HENNEAUX M, TEITELBOIM C, ZANELLI J. Gauge invariance and degree of freedom count[J]. Nucl Phys, 1990, B322,169-188.
[5]  APPLEBY D M. Proof of Dirac's conjecture concerning the generators of surfaces of physically equivalent points[J]. J Phys, 1982, A15: 1191-1200.
[6]  LI Z P, XIE Y C. Gauge generator in Dirac theory of constrained system with singular higher-order Lagrangian[J]. Commun Theor Phys, 1994, 21: 247.
[7]  CAWLEY R. Augmented algorithm for the Hamiltonian[J]. Phys Rev, 1980, D21: 2988-2990.
[8]  FRENKEL A. Comment on Cawley's counterexample to a conjecture of Dirac[J]. Phys Rev, 1980, D21: 2986-2987.
[9]  LI Zi-ping. Symmetry in phase space for a system with a singular Lagrangian[J]. Phys Rev, 1994, E52: 876-887.
[10]  HENNEAUX M, TEITELBOIM C. Quantization of Gauge System[M]. Princeton: Princeton University Press, 1992.
[11]  LI Z P. Symmetry in a constrained Hamiltonian system with singular higher-order Lagrangian[J]. J Phys, 1991, A24: 4261-4274.
[12]  BANERJEE R, ROTHE H J, ROTHE K D. Master equation for Lagrangian gauge symmetries [J]. Phys Lett, 2000, B479:429-434.
[13]  BANERJEE R, ROTHE H J, ROTHE K D. Hamiltonian approach to Lagrangian gauge symmetries[J]. Phys Lett, 1999, B463: 248-251.
[14]  BANERJEE R, RTHE H J, ROTHE K D. Recursive construction of the generator for Lagrangian gauge symmetries[J]. J Phys A: Math Gen, 2000,33:2059-2068.
[15]  李爱民,江金环,李子平.Dirac猜想的一个反例[J].物理学报,2002,51(5):943-945. LI Ai-min, JIANG Jin-huan, LI Zi-ping. A counter-example to a conjecture of Dirac[J]. Acta Physica Sinica, 2002,51 (5):943-945. (in Chinese)
[16]  COSTA M E V, GIROTTI H O, SIMOES T J M. Dynamics of gauge system and Dirac's conjecture[J]. Phys Rev, 1985, D32: 405-410.
[17]  CABO A. Dirac's conjecture for systems having only first-class constraints[J]. J Phys: A Math Gen, 1986, 19: 629-638.
[18]  ALLOCK G R. The intrinsic properties of rank and nullity of the Lagrange bracket in the one dimensional calculus of varia- tions[J]. Phil Trans Roy Soc, 1975, A279: 485-545.
[19]  CAWLEY R. Detemination of the Hamiltonian in the presence of constraints[J]. Phys Rev Lett, 1979, 42: 413.
[20]  LI Zi-ping, LI Xin. Generalized Noether theorems and applications[J]. Int J Theor Phys, 1991, 30: 225-233.
[21]  QI Z. Dirac's constraint theory: Correction to alleged counterexamples[J]. Int J Theor Phys, 1990, 29: 1309-1312.
[22]  李子平.经典与量子约束系统及其对称性质[M].北京:北京工业大学出版社,1993. LI Zi-ping. Classical and Quantal Dynamics of Constrained Systems and Their Symmetry Properties[M]. Beijing: Beijing University of Technology, 1993. (in Chinese)
[23]  SUDARSHAN E C G, MUKUNDA N. Classical Dynamics: A Modern Perspective[M]. New York: Wiley, 1974.
[24]  GITMAN D M, TYUTIN I V. Quantization of Fields With Constraints[M]. Heidelberg: Springer-Verlag, 1990.
[25]  CHAICHIAN M, MARTINEZ D L. On the Noether Identities for a Class of Systems With Singular Lagrangians[M]. J Math Phys, 1994,35:6536-6545.
[26]  SHIRZAD A. Gauge symmetry in Lagrangian formulation and Schwinger models[J]. J Phys, 1998, A31:2747-2760.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133