高海啸,李子平.约束Hamilton系统量子理论中的Noether定理和Poincare-Cartan积分不变量[J].北京工业大学学报,1997,23(4):1-6.GAO Hai-xiao,LI Zi-ping. Noether theorem and poincare-cartan integral invariant in Quantum case for a constrained hamilton system[J] . Journal of Beijing Polytechnic University, 1997,23(4): 1-6. (in Chinese)
[4]
李瑞洁,李子平.关于量子Poincare-Cartan积分不变量[J].北京工业大学学报,2000,26(4):1-6.LI Rui-jie,LI Zi-ping. On quantal poincare-cartan integral invariant[J] . Journal of Beijing Polytechnic University, 2000, 26 (4): 1-6. (in Chinese)
[5]
ZHANG Y, LI Z P. Quantal poincare-cartan integral invariant for field theory[J] . Int J Theor Phys, 2004, 43(12):2423-2433.
[6]
SENJANOVIC P. Path integral quantization of field theories with second-class constraints[J]. Ann Phys, 1976, 100: 227-261.
[7]
SUURA H, YOUNG B L. Derivation of general conservation laws and Ward-Takahashi identities in the functional integration method[J]. Phys Rev D, 1973, 8:4353-4371.
[8]
ZHANG Y, LI Z P. The quantal Poincare-Cartan integral invariantfor singular higher-order Lagrangian in field theories[J]. Eur Phys J C, 2005, 41(2): 257-263.
[9]
LI Z P, JIANG J H. Symmetries in constrained canonical systems[M]. Beijing: Science Press, 2002.