全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

入侵检测中的多分类SVM增量学习算法

Keywords: 支持向量机,入侵检测,增量学习,多分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过分析入侵检测样本的分布特点,提出了一种多分类SVM增量学习算法.该算法通过衡量同类样本点和样本中心之间的距离来确定用于训练的支持向量,以选择对分类贡献较大的边缘向量进行训练,通过求解多个超平面的方法划分出不同类别样本的区域,实现了多分类的增量学习.在保证检测率的同时,减少了样本学习数量.利用KDDCUP99标准数据集进行测试,证明该算法可以大幅度降低训练的时间和空间复杂度.

References

[1]  VAPNIK V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995:326-328.
[2]  萧嵘,王继成,孙正兴,等.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824.XIAO Rong,WANG Ji-cheng,SUN Zheng-xing,et al.An incremental SVM learning algotithmα-ISVM[J].Journal ofSoftware,2001,12(12):1818-1824.(in Chinese)
[3]  陶亮.基于活跃集迭代法的支持向量机快速增量算法[J].系统仿真学报,2006,18(11):3305-3312.TAO Liang.Fast incremental SVM learning algorithm based on active set iterations[J].Journal of System Simulation,2006,18(11):3305-3312.(in Chinese)
[4]  杨涛,谢剑英.一种片率增量SVM多用户检测器算法仿真研究[J].系统仿真学报,2004,16(10):2185-2188.YANG Tao,XIE Jian-ying.A chip-increment support machine-based algorithm for multi-user detection[J].Journal ofSystem Simulation,2004,16(10):2185-2188.(in Chinese)
[5]  KNERR S,PERSONNAZ L,DREYFUS G.Single-layer learning revisited:a stepwise procedure for building and training aneural network[C]∥Neurocomputing:Algorithms,Architectures and Applications.New York:Springer-Verlag,1999:667-670.
[6]  李东晖,杜树新,吴铁军.基于壳向量的线性支持向量机快速增量学习算法[J].浙江大学学报:工学版,2006,40(2):203-207.LI Dong-hui,DU Shu-xin,WU Tie-jun.Fast incremental learning algorithm of linear support vector machine based on hullvectors[J].Journal of Zhejiang University:Engineering Science,2006,40(2):203-207.(in Chinese)
[7]  SYED N,LIU H,SUNG K.Handling incremental learning with support vector machines[C]∥Proc Workshop on SupportVector Machines at the International Joint Conference on Artificial Intelligence(i-ICAI99).Stockholm,Sweden:MorganKaufmann,1999:458-462.
[8]  普雷帕拉塔,沙莫斯.计算几何导论[M].庄心谷,译.北京:科学出版社,1990:183-187.
[9]  邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004.
[10]  王瑞平,陈杰,山世光,等.基于支持向量机的人脸检测训练集增强[J].软件学报,2008,19(11):2921-2931.WANG Rui-ping,CHEN Jie,SHAN Shi-guang,et al.Enhancing training set of face detection based on SVM[J].Journalof Software,2008,19(11):2921-2931.(in Chinese)
[11]  武方方,赵银亮.基于尺度核函数的最小二乘支持向量机[J].模式识别与人工智能,2006,19(5):598-603.WU Fang-fang,ZHAO Yin-liang.Lease squares support vector machine based on scaling kernel function[J].PatternRecognition and Artificial Intelligence,2006,19(5):598-603.(in Chinese)
[12]  ESKIN E,ARNOLD A,PRERAU M,et al.A geometric framework for unsupervised anomaly detection:detectingintrusions in unlabeled data[M]∥Applications of Data Mining in Computer Security.New York:Kluwer,2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133