全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

核扩展判定及核扩展方法

Keywords: 机器学习,模式识别,核方法,核扩展,KPCA

Full-Text   Cite this paper   Add to My Lib

Abstract:

给出一种判定模式识别算法能否核扩展的方法,该方法具有不被算法具体形式所限制的优点.传统核扩展方法是通过将输入数据映射到特征空间,然后在特征空间运行原始算法,得到相应的核方法.给出另外一种核扩展策略,与传统核扩展方法具有等价性.分析及试验过程都表明,本文的核扩展方法具有可行性.

References

[1]  VAPNIK V.The nature of statistical learning theory[M].New York:Springer,1995:70-85.
[2]  SCHOLKOPF B,SMOLA A,MULLER K R.Nonlinear component analysis as a kernel eigenvalue problem[J].NeuralComputation,1998,10(5):1299-1319.
[3]  MIKA S,RATSCH G,WESTON J,et al.Fisher discriminant analysis with kernels[J].Proc IEEE Int l Workshop NeuralNetworks for Signal Processing IX,1999,8:41-48.
[4]  MIKA S,RATSCHG,SCHOLKOPF B,et al.Invariant feature extraction and classification in kernel spaces[C]∥Advancesin Neural Information Processing Systems.Cambridge:MITPress,1999:526-532.
[5]  SHAWE-TAYLOR J,CRISTIANINI N.Kernel methods for pattern analysis[M].Cambridge:Cambridge University Press,2004:211-229.
[6]  YANG J,FRANGI A F,YANG J Y,et al.KPCA pus LDA:a complete kernel fisher discriminant framework for featureextraction and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-244.
[7]  XU Y,SUN B,ZHANG C Y,et al.An implemention framework for kernel methods with high-dimensional patterns[C]∥Proceedings of the Fifth International Conference on Machine Learning and Cybernetics,Dalian:IEEE Press,2006:13-16.
[8]  SCHOLKOPF B,MIKAS,KNIRSCHB,et al.Input space vs.feature space in kernel-based methods[J].IEEE Transactionson Neural Networks,1999,10(5):1000-1017.
[9]  CHEN W,ZHANG H.The condition of kernelizing an algorithm and an equivalence between kernel methods[C]∥LectureNotes In Computer Science 4477,Berlin:Springer,2007:338-345.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133