LI Xiao-li.A brief review:acoustic emission method fortool wear monitoring during turning[J].InternationalJournal of Machine Tools&Manufacture,2002,42:157-165.
[2]
范玉刚,李平,宋执环.动态加权最小二乘支持向量机[J].控制与决策,2006,21(10):1129-1133.FAN Yu-gang,LI Ping,SONG Zhi-huan.Dynamicweighted least squares support vector machines[J].Control and Decision,2006,21(10):1129-1133.(inChinese)
[3]
JANTUNEN E.A summary of methods applied to toolcondition monitoring in drilling[J].International Journalof Machine Tools&Manufacture,2002,42:997-1010.
[4]
SUN J,HONG G S,RAHMAN M,et al.Effective train-ing data selection in tool condition monitoring system[J].International Journal of Machine Tools&Manufacture,2006,46:218-224.
[5]
王奉涛,马孝江,邹岩崑,等.基于小波包分解的频带局部能量特征提取方法[J].农业机械学报,2004,35(5):177-180.WANG Feng-tao,MA Xiao-jiang,ZOU Yan-kun,et al.Local power feature extraction method of frequency bandsbased on wavelet packet decomposition[J].Journal ofAgricultural Machinery,2004,35(5):177-180.(inChinese)
[6]
王旭辉,黄圣国,舒平.基于最小二乘支持向量机的航空发动机故障远程诊断[J].机械科学与技术,2007,26(5):595-599.WANG Xu-hui,HUANG Sheng-guo,SHU Ping.Remotediagnosis of aeroengine's fault using LS-SVM[J].Mechanical Science and Technology for AerospaceEngineering,2007,26(5):595-599.(in Chinese)
[7]
杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005:63-67.
[8]
SRINIVASA P,RAMAKRISHNA R P K.Acousticemission analysis for tool wear monitoring in face milling[J].International Journal of Production Research,2002,40(5):1081-1093.
[9]
陈爱军.最小二乘支持向量机及其在工业过程建模中的应用[D].杭州:浙江大学信息科学与工程学院,2006.CHEN Ai-jun.The study of least squares support vectormachine and its application in industrial process modeling[D].Hangzhou:Colledge of Information Science andEngineering,Zhejiang University,2006.(in Chinese)
[10]
POYHONEN S,NEGREA M,ARKKIO A,et al.Faultdiagnostics of an electrical machine with multiple supportvector classi-fiers[C]∥Proceedings of 2002 IEEEInternational Symposium on intelligent control,Vancouver,Canada,October 27-30,2002.