全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带有部分耗散和磁扩散的二维不可压MHD方程组解的正则性条件

Keywords: 正则性,2D不可压Magnetohydrodynamic(MHD)方程组,无黏性极限

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了带有部分耗散和磁扩散的二维不可压磁流体力学方程组解的正则性问题,给出带有混合部分耗散和磁扩散(速度场和磁场只有同一个方向上的二阶偏导数)的二维不可压Magnetohydrodynamics(MHD)方程组的一个整体正则性条件.证明了只要磁场在一个方向的偏导数满足一定条件,那么带有混合部分耗散和磁扩散的二维不可压MHD方程组的唯一局部经典解为整体经典解.

References

[1]  DANCHIN R,PAICU M.Global existence results for theanisotropic Boussinesq system in dimension two[J].MathModels Methods Appl Sci,2011,21(3):421-457.
[2]  DUVAUT G,LIONS J L.Inéquations en thermo-élasticitéet magnétohydrodynamique[J].Arch Rational MechAnal,1972,46(4):241-279.
[3]  SERMANGE M,TEMAM R.Some mathematical questionsrelated to the MHD equations[J].Comm Pure Appl Math,1983,36(5):635-664.
[4]  WU J H.Viscous and inviscous magneto-hydrodynamicsequations[J].Journal D'Analyse Mathematique,1997,73(1):251-265.
[5]  WU J H,CAO C S.Global regularity for the 2D MHDequations with mixed partial dissipation and magneticdiffusion[J].Advances in Math,2011,226(2):1803-1822.
[6]  CHAE D.Global regularity for the 2D Boussinesqequations with partial viscosity terms[J].Advances inMath,2006,203(2):497-513.
[7]  HOU T Y,LI C M.Global well-posedness of the viscousBoussinesq equations[J].Discete and ContinuousDynamics Systems,2005,12(1):1-12.
[8]  KEING C E,PONCE G,VEGA L.Well-posedness of theinitial value problem for the Korteweg-de Vries equation[J].J Amer Math Soc,1991,4(2):323-347.
[9]  CAO C S,WU J H.Two regularity criteria for the 3D MHDequations[J].J Diff Equa,2010,248(9):2263-2274.
[10]  CHAE D H,WU J H.The 2D Boussinesq equations withlogarithmically supercritical velocities[J].Advances inMathematics,2012,230(4/5/6):1618-1645.
[11]  CAO C S,TITI E S.Global well-posedness of the 3Dprimitive equations with partial vertical turbulence mixingheat diffusion[J].Communications in MathematicalPhysics,2012,310(2):537-568.
[12]  HOU T Y,SHI Z Q,WANG S.On singularity formationof a 3D model for incompressible Navier-Stokes equations[J].Adv Math,2012,230(2):607-641.
[13]  PENG Y J,WANG S,GU Q L.Relaxation limit andglobal existence of smooth solutions of compressible Euler-Maxwell equations[J].Siam J Math Anal,2011,43(2):944-970.
[14]  HOU T Y,LI C M,SHI Z Q,et al.On singularityformation of a nonlinear nonlocal system[J].ArchRation Mech Anal,2011,199(1):117-144.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133