DANCHIN R,PAICU M.Global existence results for theanisotropic Boussinesq system in dimension two[J].MathModels Methods Appl Sci,2011,21(3):421-457.
[2]
DUVAUT G,LIONS J L.Inéquations en thermo-élasticitéet magnétohydrodynamique[J].Arch Rational MechAnal,1972,46(4):241-279.
[3]
SERMANGE M,TEMAM R.Some mathematical questionsrelated to the MHD equations[J].Comm Pure Appl Math,1983,36(5):635-664.
[4]
WU J H.Viscous and inviscous magneto-hydrodynamicsequations[J].Journal D'Analyse Mathematique,1997,73(1):251-265.
[5]
WU J H,CAO C S.Global regularity for the 2D MHDequations with mixed partial dissipation and magneticdiffusion[J].Advances in Math,2011,226(2):1803-1822.
[6]
CHAE D.Global regularity for the 2D Boussinesqequations with partial viscosity terms[J].Advances inMath,2006,203(2):497-513.
[7]
HOU T Y,LI C M.Global well-posedness of the viscousBoussinesq equations[J].Discete and ContinuousDynamics Systems,2005,12(1):1-12.
[8]
KEING C E,PONCE G,VEGA L.Well-posedness of theinitial value problem for the Korteweg-de Vries equation[J].J Amer Math Soc,1991,4(2):323-347.
[9]
CAO C S,WU J H.Two regularity criteria for the 3D MHDequations[J].J Diff Equa,2010,248(9):2263-2274.
CAO C S,TITI E S.Global well-posedness of the 3Dprimitive equations with partial vertical turbulence mixingheat diffusion[J].Communications in MathematicalPhysics,2012,310(2):537-568.
[12]
HOU T Y,SHI Z Q,WANG S.On singularity formationof a 3D model for incompressible Navier-Stokes equations[J].Adv Math,2012,230(2):607-641.
[13]
PENG Y J,WANG S,GU Q L.Relaxation limit andglobal existence of smooth solutions of compressible Euler-Maxwell equations[J].Siam J Math Anal,2011,43(2):944-970.
[14]
HOU T Y,LI C M,SHI Z Q,et al.On singularityformation of a nonlinear nonlocal system[J].ArchRation Mech Anal,2011,199(1):117-144.