LIU X, LI K, MCAFEE M, et al. Improved nonlinear PCA for process monitoring using support vector data description [J]. Journal of Process Control, 2011, 21(9): 1306-1317.
[2]
XU X, XIE L, WANG S. Multi-mode process monitoring method based on PCA mixture model [J]. CIESC Journal, 2011, 62(3): 743-752.
[3]
WANG L, SHI H. Multivariate statistical process monitoring using an improved independent component analysis [J]. Chemical Engineering Research and Design, 2010, 88(4): 403-414.
[4]
HSU C, CHEN M, CHEN L. Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring [J]. Expert Systems with Applications, 2010, 37(4): 3264-3273.
[5]
WANG L, SHI H. Online batch process monitoring based on kernel ICA [J]. CIESC Journal, 2010, 61(5): 1183-1189.
[6]
JENG J. Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms [J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(4): 475-481.
[7]
HU Z, CHEN Z, HUA C, et al. A simplified recursive dynamic PCA based monitoring scheme for imperial smelting process [J]. International Journal of Innovative Computing Information and Control, 2004, 8(4): 2551-2561.
[8]
ZHAO C, GAO F, WANG F. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) [J]. Industrial and Engineering Chemistry Research, 2009, 48(20): 9163-9174.
[9]
TIAN X, ZHANG X, DENG X, et al. Multiway kernel independent component analysis based on feature samples for batch process monitoring [J]. Neurocomputing, 2009, 72(7/8/9): 1584-1596.