全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进的自适应粒子群算法的给水管网优化设计

Keywords: 给水管网,趋同因子,自适应粒子群算法,变异策略

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对粒子群算法在优化给水管网设计时易陷入局部最优难以寻找到最优解的问题,提出改进的动态自适应粒子群算法(modifieddynamicallyadaptiveparticleswarmoptimization,M-DAPSO).定义趋同因子和参数调整函数,使算法能根据种群内部信息自适应调整参数,提出自适应变异策略增加种群多样性.最后,将M-DAPSO算法应用到Hanoi管网优化中,仿真结果表明:该算法能以最小的计算代价求得最优的工程造价;与其他优化算法相比,M-DAPSO算法具有较强的全局搜索能力和较快的收敛速度.

References

[1]  储诚山,张宏伟.基于改进混合遗传算法的给水管网优化设计[J].天津大学学报,2006,39(10):1216-1220.CHU Cheng-shan,ZHANG Hong-wei.The optimal design of water distribution networks based on improved hybrid genetic algorithm[J].Journal of Tianjin University,2006,39(10):1216-1220.(in Chinese)
[2]  EIGER G,SHAMIR U,BENTAL A.Optimisation design of water distributionnetworks[J].Water Resour Res,1994,30(9):2637-2646.
[3]  VARMAK,NARASIS.Optimal design of water distribution systems using an NLP method[J].J Environ Eng ASCE,1997,123(4):381-388.
[4]  王圃,衡洪飞,岳健.基于退火遗传算法的给水管网优化[J].中国给水排水,2007,23(1):60-63.WANG Pu,HENG Hong-fei,YUE Jian.Optimization of water network by annealing genetic algorithm[J].China Water&Wasterwater,2007,23(1)60-63.(in Chinese)
[5]  TONG Lei,HAN Guang,QIAO Jun-fei.Design of water supply network via ant colony optimization[C]∥The 2nd International Conference on Intelligent Control and Information Processing.Harbin:ICICIP,2011:366-370.
[6]  KENNEDY J,EBERHARTR C.Particle swarmoptimization[C]∥Proc IEEE Int Conf Neural Netw.Perth,Australia:IEEE,1995,4:1942-1948.
[7]  SHI Y,EBERHARTR C.A modified particle swarm optimizer[C]∥Proc IEEE World Congr on Comput Intell.Anchorage.AK:IEEE,1998:69-73.
[8]  SAVICD A,WALTERSG A.Genetic algorithms for leastcost design of water distribution networks[J].Water Resour Plan Manage ASCE,1997,123(2):67-77.
[9]  杜继永,张凤鸣,李建文.一种具有初始化功能的自适应惯性权重粒子群算法[J].信息与控制,2012,41(2):165-169.DU Ji-yong,ZHANG Feng-ming,LI Jian-wen.A particle swarm optimization algorithm with initialized adaptive inertia weights[J].Information and Control,2012,41(2):165-169.(in Chinese)
[10]  EBERHART R C,SHI Y.Tracking and optimizing dynamic systems with particle swarms[C]∥Proc IEEE Congr Evol Comput.Seoul,Korea:IEEE,2001:94-97.
[11]  RECA J,MARTINEZ J,GIL C,et al.Application of several meta-heuristic techniques to the optimization of real looped water distribution networks[J].Water Resources Management,2008,22(10):1367-1379.
[12]  施展,陈庆伟.基于量子行为特性粒子群和自适应网格的多目标优化算法[J].信息与控制,2011,40(2):214-231.SHI Zhan,CHEN Qing-wei.Multi-objective optimization algorithm based on quantum-behaved particle swarm and adaptive grid[J].Information and Control,2011,40(2):214-231.(in Chinese)
[13]  ZHENG F F,SIMPON A R,ZECHIN A.Performance study of differential evolution with various mutation strategies applied to water distribution system optimization[C]∥World Environmental and Water Resources Congress.Palm Springs,California:American Society of Civil Engineers,2011:166-176.
[14]  SURIBABU C R.Differential evolution algorithm for optimal design of water distribution networks[J].Journal of Hydroinformatics,2010,12(1):66-82.
[15]  DANDY G C,SIMPSON A R.An improved genetic algorithm for pipe network optimization[J].Water Resources Research,1996,32(2):449-458.
[16]  MOHAN S,BABU K S.Optimal water distribution network design with honey-bee mating optimization[J].Journal of Computing in Civil Engineering,2010,24(1):117-126.
[17]  MONTALVO I,IZQUEERDO J,PREZ-GARCA R,et al.Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems[J].Engineering Applications of Artificial Intllligence,2010,23(5):727-735.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133