全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于鲁棒最小二乘支持向量机的齿轮磨损预测

Keywords: 最小二乘支持向量机(LSSVM),鲁棒,交叉验证,参数寻优,齿轮磨损

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了降低包含噪声的现场齿轮磨损数据对最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM)模型稳健性的影响,采用迭代鲁棒最小二乘支持向量机(iterativelyrobustleastsquaressupportvectormachine,IRLSSVM)对齿轮磨损数据进行建模和预报.首先,增加权函数迭代次数以保证建模过程的鲁棒性;然后,将具有全局搜索的耦合模拟退火(coupledsimulatedannealing,CSA)与局部优化的单纯形法(simplexmethod,SM)相结合的方法用于优化IRLSSVM模型超参数,进而采用鲁棒交叉验证作为CSA-SM算法拟合目标函数,提高IRLSSVM模型超参数优化过程的鲁棒性;最后,利用K727840ZW变速箱现场齿轮磨损数据进行了数值实验,结果验证了所提出方法的有效性.

References

[1]  甘旭升,张洪才,程咏梅,等.基于鲁棒最小二乘支持向量机的气动参数拟合[J].计算机工程与应用,2007,43(31):233-235.GAN Xu-sheng,ZHANG Hong-cai,CHENG Yong-mei,et al.Aerodynamic parameter fitting based on robust least squares support vector machines[J].Computer Engineering and Applications,2007,43(31):233-235.(in Chinese)
[2]  DE BRABANTER K.Least squares support vector regression with applications to large-scale data:a statistical approach[D].Leuven:Faculty of Engineering,Katholieke Universiteit Leuven,2011.
[3]  SUYKENS J A K,VAN GESTEL T,DE MOOR B,et al.Least squares support vector machine[M].Singapore:World Scientific Publishing Co Pte Ltd,2002:153-163.
[4]  包鑫,戴连奎.加权最小二乘支持向量机稳健化迭代算法及其在光谱分析中的应用[J].化学学报,2009,67(10):1081-1086.BAO Xin,DAI Lian-kui.Robust iterative algorithm of weighted least squares support vector machine and its application in spectral analysis[J].Acta Chimica Sinica,2009,67(10):1081-1086.(in Chinese)
[5]  张艳,吴玲.基于支持向量机和交叉验证的变压器故障诊断[J].中国电力,2012,45(11):52-55.ZHANG Yan,WU Ling.Transformer fault diagnosis based on C-SVC and cross-validation algorithm[J].Electric Power,2012,45(11):52-55.(in Chinese)
[6]  DEBRABANTER J,PELCKMANS K,SUYKENS J A K,et al.Robust cross-validation score function for non-linear function estimation[C]∥Proc of the ICANN.Berlin:Springer-Verlag,2002,2415:713-719.
[7]  XAVIER-DE-SOUZA S,SUYKENS J A K,VANDEWALLE J,et a1.Coupled simulated annealing[J].IEEE Transactions on Systems,Man and Cybernetics:Part B,2010,40(2):320-335.
[8]  NELDER J A,MEAD R.A simplex method for function minimization[J].Computer Joumal,1965,7(4):308-313.
[9]  曹一波,谢小鹏.基于最小二乘支持向量机的磨损预测[J].润滑与密封,2007,32(2):138-142.CAO Yi-bo,XIE Xiao-peng.Wear loss prediction using least square support vector machine[J].Lubricat Ion Engineering,2007,32(2):138-142.(in Chinese)
[10]  宋文成.高精度同步传动中斜齿轮磨损的数值计算[J].磨擦学学报,2011,21(3):8-9.SONG Wen-cheng.Numerical calculation of helical gear wear in the high precision synchronization transmission[J].Tribology,2011,21(3):8-9.(in Chinese)
[11]  王彦刚,崔彦平,李慧勇,等.基于传动误差检测法的早期齿轮磨损故障诊断[J].振动与冲击,2012,31(13):81-84.WANG Yan-gang,CUI Yan-ping,LI Hui-yong,et al.Fault diagnosis on incipient localized tooth wear of gear based on transmission error detection method[J].Journal of Vibration and Shock,2012,31(13):81-84.(in Chinese)
[12]  汤和,汪元辉,应怀樵,等.用噪声谱分析法定量诊断齿轮磨损[J].天津大学学报,1987(2):22-30.TANG He,WANG Yuan-hui,YING Huai-qiao,et al.Quantitative ative diagnosis of gear-wear by spectrum analysis of noise[J].Journal of Tianjin University,1987(2):22-30.(in Chinese)
[13]  冯伟,谢小鹏,刘粲.齿轮磨损试验光谱油样分析及建模研究[J].郑州大学学报,2009,30(4):76-80.FENG Wei,XIE Xiao-peng,LIU Can.Spectrographic oil analysis of and modelling study on gear wear test[J].Journal of Zhengzhou University,2009,30(4):76-80.(in Chinese)
[14]  徐贞,樊瑜瑾,邢凡,等.基于铁谱分析技术的齿轮磨损研究[J].润滑与密封,2009,34(5):87-89.XU Zhen,FAN Yu-jin,XING Fan,et al.Study on the abrasion condition of gear based on ferrography[J].Lubrication Engineering,2009,34(5):87-89.(in Chinese)
[15]  郑海波,陈心昭,李志远,等.小波神经网络故障诊断系统的设计与应用[J].农业机械学报,2002,33(1):73-76.ZHENG Hai-bo,CHEN Xin-zhao,LI Zhi-yuan,et al.Implementation and application of a neural network fault diagnosis system based on wavelet transform[J].Journal of Agricultural Machinery,2002,33(1):73-76.(in Chinese)
[16]  SUYKENS J A K,DE BRABANTER J,LUKAS L,et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing,2002,48(1/2/3/4):85-105.
[17]  吴钰,王杰.基于加权最小二乘支持向量机的月度负荷预测[J].水电能源科学,2012,30(5):174-177.WU Yu,WANG Jie.Monthlyload forecasting based on least square support vector machine[J].International Journal Hydroelectric Energy,2012,30(5):174-177.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133