全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

框架结构单元几何应变能的计算与验证

Keywords: 单元几何应变能,单元几何刚度矩阵,屈曲约束,框架结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了得到框架结构单元几何应变能,在平面框架结构单元几何刚度矩阵的基础上,推导空间框架结构的单元几何刚度矩阵,借助MSCPatran软件平台,采用PCL(patrancommandlanguage)语言编写了计算单元几何应变能的程序.数值算例表明:程序运算得出的单元几何应变能求和与MSCNastran分析数据推导得出的单元几何应变能之和存在非常小的数值误差,验证了程序得出的每个单元几何应变能的正确性,解决了有限元软件难以提取单元几何应变能的问题,可用于研究屈曲约束的显式化问题.

References

[1]  吕和祥,蒋和洋.非线性有限元[M].河北:化学工业出版社,1992:218-223.
[2]  隋允康,彭细荣,叶红玲.应力约束全局化处理的连续体结构ICM拓扑优化方法[J].工程力学,2006,23(7):9-15.SUI Yun-kang,PENG Xi-rong,YE Hong-ling.Topology optimization of continuum structure with globalization of stress constraints by ICM method[J].Engineering Mechanics,2006,23(7):9-15.(in Chinese)
[3]  叶红玲,隋允康.基于ICM方法三维连续体结构拓扑优化[J].固体力学学报,2006,27(4):387-393.YE Hong-ling,SUI Yun-kang.ICM based topological optimization of three dimensional continuum structure[J].Acta Mechanica Solida Sinica,2006,27(4):387-393.(in Chinese)
[4]  彭细荣,隋允康.有频率禁区的连续体结构拓扑优化[J].固体力学学报,2007,28(2):145-150.PENG Xi-rong,SUI Yun-kang.Topological optimization of the continuum structure with non-frequency-band constraints[J].Acta Mechanica Solida Sinica,2007,28(2):145-150.(in Chinese)
[5]  杜家政,隋允康,郭英乔.同时满足刚度和强度约束的框架结构拓扑优化[J].计算力学学报,2008,25(3):339-344.DU Jia-zheng,SUI Yun-kang,GUO Ying-qiao.Topological optimization of frame structures with stiffness and strength constraints[J].Chinese Journal of Computational Mechanics,2008,25(3):339-344.(in Chinese)
[6]  隋允康,边炳传.屈曲与应力约束下连续体结构的拓扑优化[J].工程力学,2008,25(8):6-12.SUI Yun-kang,BIAN Bing-chuan.Topological optimization of continuum structures under buckling and stress constraints[J].Engineering Mechanics,2008,25(8):6-12.(in Chinese)
[7]  BROWNE P A,GOULD N I M,KIM H A.A fast method for binary programming using first-order derivatives,with application to topology optimization with buckling constraints[J].International Journal for Numerical Methods in Engineering,2012,92:1026-1043.
[8]  LINDGAARD E,DAHI J.On compliance and buckling objective function in topology optimization of snap-through problems[J].Struct Multidisc Optim,2013,47:409-421.
[9]  YANG Y B,CHIOU H T.Rigid body motion test for nonlinear analysis with beam elements[J].Journal of Engineering Mechanics,1987,113(9):1404-1419.
[10]  童根树.刚结构的平面内稳定[M].北京:中国建筑出版社,2006:290-303.
[11]  张年文.框架结构几何非线性分析的若干问题[D].杭州:浙江大学学院建筑工程学院,2010.ZHANG Nian-wen.Several problems in geometrically nonlinear analysis for frames[D].Hangzhou:College of Civil Engineering and Architecture,Zhejiang University,2010.(in Chinese)
[12]  YANG Y B,McGUIRE W.Stiffness matrix for geometric nonlinear analysis[J].Journal of Structural Engineering,1986,112(4):853-877.
[13]  刘光栋,王解君,何放龙.空间梁单元的几何非线性刚度矩阵的分解形式[J].湖南大学学报,1992,19(1):60-71.LIU Guang-dong,WANG Jie-jun,HE Fang-long.Resolved formulation of geometrical nonlinear stiffness matrix for three-dimensional beam element[J].Journal of Hunan University,1992,19(1):60-71.(in Chinese)
[14]  王勖成.有限元单元法[M].北京:清华大学出版社,2003:329-331.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133