全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多向核熵偏最小二乘的间歇过程监测及质量预测

Keywords: 间歇过程,多向核熵偏最小二乘,过程监测,质量预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对间歇过程数据的批次不等长和强非线性的特点,结合核偏最小二乘和核熵分析,提出了多向核熵偏最小二乘(multi-waykernelentropypartialleastsquares,MKEPLS)的过程监测及质量预测方法.该方法将三维历史数据沿新的展开方式展开,克服了批次不等长和数据缺失的问题,通过核映射将过程数据从低维输入空间映射到高维特征空间,实现变量之间非线性相关关系的线性转换,解决了数据的非线性特性;根据核熵的大小将特征值和特征向量进行排序并对数据进行降维,弥补了MKPLS方法只按照数据特征值的最大化进行降维的不足.同时,引入核特征提取算法降低核空间的计算量,使其能够在线应用.数值实例和实际工业过程数据的验证效果表明:MKEPLS方法不仅能对故障进行有效监控,提高故障的报警率,同时还能对最终产品质量进行预测.

References

[1]  ROOP R,SHI Zhen-qi.Application of principal component analysis(PCA)to evaluating the deformation behaviors of pharmaceutical powders[J].Journal of Pharmaceutical Innovation,2013,82:121-130.
[2]  WU Jia,LUO Wei,WANG Xue-kai.A new application of WT-ANN method to control the preparation process of met form in hydrochloride tablets by near infrared spectroscopy compared to PLS[J].Pharmceutical and Biomedical Analysis,2013,80(1):186-191.
[3]  GEERT G,JEF V,JAN F.Discriminating between critical and noncritical disturbances in(Bio)chemical bach processes using multi-model fault detection and end-quality prediction[J].Industrial and Engineering Chemistry Research,2012,51:12375-12385.
[4]  NAES T,TOMIC O.Multi-block regression based on combination so for thogonalisation,PLS regressionand canonical correlation analysis[J].Chemometrics and Intelligent Laboratory Systems,2013,124:32-42.
[5]  ZHANG Ying-wei,HU Zhi-yong.Multivariate process monitoring and analysis based on multi-scale KPLS[J].Chemical Engineering Research&Design,2011,89(12):2667-2678.
[6]  ZHANG Ying-wei,AN Jia-yu,LI Zhi-ming.Modeling and monitoring for handling nonlinear dynamic processes[J].Information Sciences,2013,235:97-105.
[7]  ZHANG Ying-wei,TENG Yong-dong,ZHANG Yang.Complex process quality prediction using modifies kernel partial least squares[J].Chemical Engineer Science,2010,65:2153-2158.
[8]  ROSIPAL R,TREJ O,LI J.Kernel partial least squares regression in reproducing kernel Hilbert space[J].Journal of Machine Learning Research,2001,2(6):97-123.
[9]  LI Xiao-guang,ZHOU Xia-qing.A KPLS eigentransformation model based face hallucination algorithm[J].Chinese Journal of Electronics,2011,21(4):683-686.
[10]  JENSSEN R.Kernel entropy component analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(5):847-860.
[11]  PENG Xin-jun,XU Dong.A local information based feature selection algorithm for data regression[J].IEEE Transactions on Industrial Electronics,2013,60(9):4063-4073.
[12]  SWATI S,ASHOK G.Feature selection for medical diagnosis:evaluation for cardiovascular diseases[J].Expert Systems with Applications,2013,40(10):4146-4153.
[13]  齐咏生,王普,高学金,等.基于多阶段动态PCA的发酵过程故障监测[J].北京工业大学学报,2012,38(10):1474-1481.QI Yong-sheng,WANG Pu,GAO Xue-jin,et al.Fault detection for fermentation process based on multiphase dynamic PCA[J].Journal of Beijing University of Technology,2012,38(10):1474-1481.(in Chinese)
[14]  LEE Jong-min,YOO Chang-kyoo.Fault detection of batch processes using multiway kernel principal component analysis[J].Computers&Chemical Engineering,2004,28:1837-1847.
[15]  ZHANG Ying-wei,TENG Yong-dong.Process data modeling using modified kernel partial least squares[J].Chemical Engineering Science,2010,65(24):6353-6361.
[16]  GEER G,JEF V,JAN F M.Discriminating between critical and noncritical disturbances in chemical batch process using multimode fault detection and end-quality prediction[J].Industrial and Engineering Chemistry Research,2012,51:12375-12385.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133