全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合多数据源的蛋白质功能模块的挖掘算法

Keywords: 蛋白质相互作用网络,网络模块挖掘,多数据集成,聚类集成,可重叠聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对蛋白质相互作用(protein-proteininteraction,PPI)网络的信息不完善和高噪声问题,提出一种融合多生物数据的二分图聚类集成方法以检测网络中的功能模块.该方法结合了基因本体论(geneontology,GO)、基因表达谱数据以及多种基础聚类算法,用一种新的二分图来组织多种基础聚类算法的中间结果,并结合对称非负矩阵分解(non-negativematrixfactorization,NMF)算法挖掘其中功能意义上最一致蛋白质功能模块,同时,该算法能处理蛋白质功能重叠问题.实验结果表明:所提算法整体优于基准比较方法,是一种融合多种生物信息源和不同的聚类方法的有效途径.

References

[1]  BREM R B,KRUGLYAK L.The landscape of genetic complexity across 5,700 gene expression traits in yeast[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(5):1572-1577.
[2]  PU S,WONG J,TURNER B,et al.Up-to-date catalogues of yeast protein complexes[J].Nucleic Acids Research,2009,37(3):825-831.
[3]  WANG J,LI M,CHEN J,et al.A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks[J].IEEE ACM Transactions on Computational Biology and Bioinformatics,2011,8(3):607-620.
[4]  MACROPOL K,CAN T,SINGH A K.RRW:repeated random walks on genome-scale protein networks for local cluster discovery[J].BMC Bioinformatics,2009,10(Mc):283.
[5]  FERN X Z,BRODLEY C E.Solving cluster ensemble problems by bipartite graph partitioning[C]∥Twentyfirst International Conference on Machine Learning.Banff,Canada:IEEE,2004:36-41.
[6]  KIM H,PARK H.Nonnegative matrix factorization based on alternating non-negativity constrained least squares and active set method[J].SIAM Journal on Matrix Analysis and Applications,2008,30(2):713.
[7]  RHEE S Y,WOOD V,DOLINSKI K,et al.Use and misuse of the gene ontology annotations[J].Nature Reviews Genetics,2008,9(7):509-515.
[8]  BONETTA L.Protein-protein interactions:interactome under construction[J].Nature,2010,468:851-854.
[9]  BADER G D,HOGUE C W.An automated method for finding molecular complexes in large protein interaction networks[J].BMC Bioinformatics,2003,4:2.
[10]  CHO Y R,HWANG W,ZHANG A.Efficient modularization of weighted protein interaction networks using k-hop graph reduction[C]∥IEEE 6th Symposium on Bioinformatics and Bioengineering.Washington D C:IEEE,2006:289-298.
[11]  ULITSKY I,SHAMIR R.Identifying functional modules using expression profiles and confidence-scored protein interactions[J].Bioinformatics,2009,25(9):1158-1164.
[12]  VON MERING C,KRAUSE R,SNEL B,et al.Comparative assessment of large-scale data sets of protein-protein interactions[J].Nature,2002,417(6887):399-403.
[13]  ADAMCSEK B,PALLA G,FARKAS I J,et al.CFinder:locating cliques and overlapping modules in biological networks[J].Bioinformatics,2006,22(8):1021-1023.
[14]  KROGAN N J,CAGNEY G,YU H,et al.Global landscape of protein complexes in the yeast saccharomyces cerevisiae[J].Nature,2006,440(7084):637-643.
[15]  SEGAL E,WANG H,KOLLER D.Discovering molecular pathways from protein interaction and gene ex-pression data[J].Bioinformatics,2003,19(Suppl 1):i264-i271.
[16]  CHO Y R,SHI L,ZAHNG A.Flownet:flow-based approach for efficient analysis of complex biological networks[C]∥Ninth IEEE International Conference on Data Mining.Miami,FL:IEEE,2009:91-100.
[17]  GAO J.A graph-based consensus maximization approach for combining multiple supervised and unsupervised models[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(1):15-28.
[18]  GAVIN A C,ALOY P,GRANDI P,et al.Proteome survey reveals modularity of the yeast cell machinery[J].Nature,2006,440(7084):631-636.
[19]  DU PLEASSIS L,SKUNCA N,DESSIMOZ C.The what,where,how and why of gene ontology-a primer for bioinformaticians[J].Briefings in Bioinformatics,2011,12(6):723-735.
[20]  RESNIK P.Semantic similarity in a taxonomy:an information-based measure and its application to problems of ambiguity in natural language[J].Journal of Artificial Intelligence Research,2011,11(95):95-130.
[21]  LIN D.An information-theoretic definition of similarity[J].Quality,1998,1:296-304.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133