全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

避免MCVC结构拓扑优化模型出现机构的方法

Keywords: 结构拓扑优化,体积比约束,位移约束,机构,结构应变能比

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了避免带体积约束的柔顺度最小化(minimumcompliancewithavolumeconstraint,MCVC)模型出现机构,借助带位移约束的重量最小化(minimumweightwithadisplacementconstraint,MWDC)模型,寻找MCVC模型中安全可靠的物理的或者结构性能的参数阈值.99行程序和120行程序分别被用来求解MCVC和MWDC模型.通过对大量出现机构的病态算例进行研究分析发现,当迭代过程中的最大应变能比小于某个阈值时,或者当体积比大于某个阈值时,就可避免机构出现.然而,这2个阈值是依赖于问题的,即对于不同的结构与/或载荷工况,这2个阈值均会取不同的值.在本文测试的算例中,最大应变能比阈值的范围为4.59~12.38,体积比阈值的范围为0.15~0.26.

References

[1]  SUI Yun-kang,YI Gui-lian.A discussion about choosing an objective function and constraints in structural topology optimization[C]∥10th World Congress on Structural and Multidisciplinary Optimization,May 19-24,2013.Orlando,Florida:International Society for Structural and Multidisciplinary Optimization(ISSMO).
[2]  SIGMUND O.A 99 line topology optimization code written in MATLAB[J].Structure and Multidisciplinary Optimization,2001,21(2):120-127.
[3]  SIGMUND O.Morphology-based black and white filters for topology optimization[J].Structure and Multidisciplinary Optimization,2007,33(4/5):401-424.
[4]  MAUTE K,Ramm E.Adaptive topology optimization[J].Structural Optimization,1995,10(2):100-112.
[5]  CHU D N,XIE Y M,STEVEN G P.An evolutionary structural optimization method for sizing problem with discrete design variables[J].Computer structure,1998,68(4):419-431.
[6]  NAVARRINA F,MUINOS I,COLOMINAS I,et al.Topology optimization structures:a minimum weight approach with stress constraints[J].Advances in Engineering Software,2005,36(9):599-606.
[7]  BRUGGI M,DUYSINX P.Topology optimization for minimum weight with compliance and stress constraints[J].Structure and Multidisciplinary Optimization,2012,46(3):369-384.
[8]  BOJCZUK D,REBOSZ-KURDEK A.Topology optimization of trusses using bars exchange method[J].Bulletin of the Polish Academy of Science-Technical Science,2012,60(2):185-189.
[9]  KUMAR A V,GOSSARD D C.Synthesis of optimal shape and topology of structures[J].Journal of Mechanical Design,1996,118(1):68-74.
[10]  LIANG Q Q,XIE Y M,STEVEN G P.Optimal topology selection of continuum structures with displacement constraints[J].Computers and Structures,2000,77(6):635-644.
[11]  BURGER M,STAINKO R.Phase-field relaxation of topology optimization with local stress constraints[J].SIAM Journal on Control and Optimization,2006,45(4):1447-1466.
[12]  BIAN B C,PENG G M,SUI Y K.Application of the structural topological optimization in the column stability design[J].Applied Mechanics and Materials,2010,37/38:190-193.
[13]  OHSAKI M,FUJISAWA K,KATOH N,et al.Semidefinite programming for topology optimization of trusses under multiple eigenvalue constraints[J].Computer Methods in Applied Mechanics and Engineering,1999,180(1/2):203-217.
[14]  BENDSE M P,SIGMUND O.Topology optimization:theory,methods and application[M].2nd ed.New York:Springer Berlin Heidelberg,2003.
[15]  HIBBELER R C.Structural analysis[M].8th ed.New Jersey:Pearson Prentice Hall,2012.
[16]  FLEURY C.A unified approach to structural weight minimization[J].Computer Methods in Applied Mechanics and Engineering,1979,20(1):17-38.
[17]  FLEURY C.An efficient optimality criteria approach to the minimum weight design of elastic structures[J].Computers and Structures,1980,11(3):163-173.
[18]  KIKUCHI N,NISHIWAKI S,FONSECA J S O,et al.Design optimization method for compliant mechanisms and material microstructure[J].Computer Methods in Applied Mechanics and Engineering,1998,151(3/4):401-417.
[19]  LIN C Y,CHAO L S.Automated image interpretation for integrated topology and shape optimization[J].Structure and Multidisciplinary Optimization,2000,20(2):125-137.
[20]  KUMAR A V,PARTHASARATHY A.Topology optimization using B-spline finite elements[J].Structure and Multidisciplinary Optimization,2011,44(4):471-481.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133