全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

串联机器人机构分析和综合同步方法的应用

Keywords: 串联机器人,机构分析,机构综合,主成分分析,核主成分分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

为揭示机器人机构综合性能与机构类型和尺寸之间的映射规律,基于机器人机构单一性能指标的相关性和多样性,引入统计学原理,依据线性降维与非线性降维原则,应用主成分分析法(principalcomponentanalysis,PCA)和核主成分分析法(kernelprincipalcomponentanalysis,KPCA),对典型串联机器人——不同构型和不同尺度的平面串联机械臂进行综合性能评价,从而选择综合性能最优的机构构型和尺度.计算结果表明:KPCA方法较PCA方法有更好的降维效果,更能有效地处理多个单一性指标间的非线性关系,提供更多的综合性能评价信息,可为建立机器人机构综合性能与其机构类型和尺寸之间的数值计算关系,并进行机构构型和尺度同步综合提供科学的参考依据.

References

[1]  郭盛,方跃法.并联机器人机构综合方法比较研究[J].北京交通大学报,2007,31(1):41-45.GUO Sheng,FANG Yue-fa.Comparative study on structural synthesis methods for parallel manipulators[J].Journal of Beijing Jiaotong University,2007,31(1):41-45.(in Chinese)
[2]  JOHNSON D E.Applied multivariate methods for data analysts[M].Beijing:Higher Education Press,2005:16-42.
[3]  李朝荣,刘扬,李春明.PCA与KPCA在综合评价中的应用[J].宜宾学院学报,2006,10(12):27-30.LI Chao-rong,LIU Yang,LI Chun-ming.Application of PCA and KPCA in comprehensive evaluation[J].Journal of Yibin University,2006,10(12):27-30.(in Chinese)
[4]  梁胜杰,张志华,崔立林.主成分分析法与核主成分分析法在机械噪声数据降维中的应用比较[J].中国机械工程,2011,22(1):80-83.LIANG Sheng-jie,ZHANG Zhi-hua,CUI Li-lin.Comparison between PCA and KPCA method in dimensional reduction of mechanical noise data[J].China Mechanical Engineering,2011,22(1):80-83.(in Chinese)
[5]  HALLIGAN G R,JAGANNATHAN S.PCA-based fault isolation and prognosis with application to pump[J].International Journal of Advanced Manufacturing Technology,2011,55(7):699-707.
[6]  KWAK K C,PEDRYCZ W.Face recognition using an enhanced independent component analysis approach[J].IEEE Transactions on Neural Networks,2007,18(2):530-541.
[7]  GAN Jun-ying,LI Chun-zhi.Two-dimensional independent component based on wavelet in face recognition application[J].Journal of System Simulation,2007,19(3):612-619.
[8]  CHEN Fu-bing,YANG Jing-yu.Sub-block PCA in face recognition application[J].Computer Engineering and Design,2007,28(8):1889-1913.
[9]  SCHOLKOPF Bernhard,SMOLA Alexander,MULLER Klaus-Robert.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.
[10]  TANG Jian,ZHAO Li-jie,YU Wen,et al.Soft sensor modeling of ball mill load via principal component analysis and support vector machines[J].Lecture Notes in Electrical Engineering,2010,67(7):803-810.
[11]  BO Cui-mei,WANG Zhi-quan,ZHANG Guang-ming.An integrated fault identification method based on KPCAPNN for complex industrial process[J].Information and Control,2009,38(1):98-109.
[12]  谢碧云,赵京.机器人运动灵活性问题研究概述[J].机械科学与技术,2011,30(8):1386-1393.XIE Bi-yun,ZHAO Jing.Advances in robotic kinematic dexterity and indices[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(8):1386-1393.(in Chinese)
[13]  MERLET J P.Jacobian,manipulability,condition number,and accuracy of parallel robots[J].Journal of Mechanical Design,2006,128(1):199-206.
[14]  李磊,金菊良,梁忠民.核主成分分析的参数优化及其在水资源可持续利用综合评价中的应用[J].水利水电科技进展,2009,29(4):36-39.LI Lei,JIN Ju-liang,LIANG Zhong-min.Parameters optimization of kernel principal component analysis and its application in evaluation of water resources sustainable utilization[J].Advances in Science and Technology of Water Resources,2009,29(4):36-39.(in Chinese)
[15]  李冬琴,王丽铮,王呈方.核主成分分析方法在船型方案综合评价中的应用[J].船海工程,2007,36(2):1-3.LI Dong-qin,WANG Li-zheng,WANG Cheng-fang.Application of the kernel principal component analysis method in comprehensive evaluation of ship type[J].Ship&Ocean Engineering,2007,36(2):1-3.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133