全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内嵌式微球透镜的光纤飞秒激光加工技术及应用

Keywords: 飞秒激光,微加工,内嵌微球透镜

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用聚焦的高重复频率飞秒脉冲在聚甲基丙烯酸甲酯薄片内部制作了具有优良光学性能的微球凸透镜及微球凹透镜.微球凸透镜的加工原理是基于飞秒激光诱致折射率变化机制,而微球凹透镜的制作是基于多光子效应及高重频激光脉冲序列的热积累效应.以微球凹透镜为例,对比了不同聚焦条件下制作微球透镜的加工效率及效果,讨论了选择聚焦透镜所需综合考虑的因素.提出了采用本方法可针对特定的应用需求设计并精确制作微光学系统.最后,讨论了内嵌式微透镜在微流控器件中增强荧光信号收集能力与成像能力的潜在应用价值,以及单步制作功能集成的微流控芯片的可能性.

References

[1]  HU A, RYBACHUK M, LU Q B, et al. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation [ J ]. Applied Physics Letters, 2007, 91(13): 131906.
[2]  PENG P, HU A, ZHOU Y. Laser sintering of silver nanoparticle thin films: microstructure and optical properties[J]. Applied Physics A, 2012, 108(3): 685-691.
[3]  BELLOUARD Y, HONGLER M O. Femtosecond-laser generation of self-organized bubble patterns in fused silica[J]. Optics Express, 2011, 19(7): 6807-6821.
[4]  白石, 周伟平, 马颖, 等. 紫外-可见光还原控制银纳米周期结构与形貌及其在表面增强拉曼散射中的应用[J]. 中国激光, 2015, 42(3): 126-132.BAI Shi, ZHOU Wei-ping, MA Ying, et al. Ag periodic nanostructures and morphology controlled by ultraviolet-visual photoreduction for surface-enhanced Raman scattering[J]. Chinese Journal of Lasers, 2015, 42(3):126-132. (in Chinese)
[5]  VáZQUEZ R M, EATON S M, CERULLO G, et al.Plastic optofluidic chip fabricated by femtosecond laser ablation[C]//SPIE LASE. San Francisco: International Society for Optics and Photonics, 2012: 82440N-1-82440N-6.
[6]  FARSON D F, CHOI H W, LU C, et al. Femtosecond laser bulk micromachining of microfluid channels in poly( methyl methacrylate ) [ J ]. Journal of Laser Applications, 2006, 18(3): 210-215.
[7]  KONDO T, YAMASAKI K, JUODKAZIS S, et al.Three-dimensional microfabrication by femtosecond pulses in dielectrics [ J]. Thin Solid Films, 2004, 453: 550-556.
[8]  MA N, ASHOK P C, STEVENSON D J , et al. Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery [ J ]. Optics Express, 2010, 18(2): 694-705.
[9]  SCHLINGLOFF G, KIEL H J, SCHOBER A. Microlenses as amplification for CCD-based detection devices for screening applications in biology, biochemistry, and chemistry[ J]. Applied Optics, 1998, 37 ( 10 ): 1930-
[10]  1934.
[11]  KATO J, TAKEYASU N, ADACHI Y, et al. Multiple-spot parallel processing for laser micronanofabrication[ J].Applied Physics Letters, 2005, 86(4): 044102.
[12]  BüTTNER A, ZEITNER U D. Wave optical analysis of light-emitting diode beam shaping using microlens arrays[J]. Optical Engineering, 2002, 41(10): 2393-2401.
[13]  SIU C P B, ZENG H, CHIAO M. Magnetically actuated MEMS microlens scanner for in vivo medical imaging[ J].Optics Express, 2007, 15(18): 11154-11166.
[14]  ROULET J C, V?LKEL R, HERZIG H P, et al.Performance of an integrated microoptical system for fluorescence detection in microfluidic systems [ J ].Analytical Chemistry, 2002, 74(14): 3400-3407.
[15]  NUSSBAUM P, VOELKEL R, HERZIG H P, et al.Design, fabrication and testing of microlens arrays for sensors and microsystems[ J]. Pure and Applied Optics:Journal of the European Optical Society Part A, 1997, 6
[16]  (6): 617.
[17]  ZHENG G, HORSTMEYER R, YANG C. Wide-field,high-resolution Fourier ptychographic microscopy [ J ].Nature Photonics, 2013, 7(9): 739-745.
[18]  HOOKE R. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses:with observations and inquiries thereupon [M]. London:John Martyn abd James Allestry, 1665.
[19]  HE M, YUAN X C, NGO N Q, et al. Simple reflow technique for fabrication of a microlens array in solgel glass[J]. Optics Letters, 2003, 28(9): 731-733.
[20]  ONG N S, KOH Y H, FU Y Q. Microlens array produced using hot embossing process [ J ].Microelectronic Engineering, 2002, 60(3): 365-379.
[21]  ISHII Y, KOIKE S, ARAI Y, et al. Ink-jet fabrication of polymer microlens for optical-I / O chip packaging [ J].Japanese Journal of Applied Physics, 2000, 39 ( 3S):1490.
[22]  CHEN T, WANG T, WANG Z, et al. Microlens fabrication using an excimer laser and the diaphragm method [ J ]. Optics Express, 2009, 17 ( 12 ): 9733-9747.
[23]  SEVERI M, MOTTIER P. Etching selectivity control resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberration [ J ].Optical Engineering, 1999, 38(1): 146-150.
[24]  FU Y Q, KOK N, BRYAN A. Microfabrication of microlens array by focused ion beam technology [ J ].Microelectronic Engineering, 2000, 54(3): 211-221.
[25]  CHEN F, LIU H, YANG Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 2010, 18(19): 20334-20343.
[26]  MALINAUSKAS M, ZUKAUSKAS A, PURLYS V, et al.Femtosecond laser polymerization of hybrid / integrated micro-optical elements and their characterization [ J ].Journal of Optics, 2010, 12(12): 124010.
[27]  LIN C H, JIANG L, CHAI Y H, et al. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing [ J]. Applied Physics A, 2009, 97(4): 751-757.
[28]  WU D, XU J, NIU L G, et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting [ J ]. Light: Science & Applications, 2015, 4(1): e228.
[29]  ZHENG Chong, Hu An-ming, KIHM K D, et al.Femtosecond laser fabrication of cavity microball lens(CMBL) inside a PMMA substrate for super ‐ wide angle imaging[J]. Small, 2015, 11(25): 3006.
[30]  ZHENG Chong, HU An-ming, LI Ruo-zhou, et al.Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser [ J]. Optics Express, 2015, 23(13): 17584-17598.
[31]  BAUM A, SCULLY P J, PERRIE W, et al. Mechanisms of femtosecond laser-induced refractive index modification of poly (methyl methacrylate) [ J]. JOSA B, 2010, 27(1): 107-111.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133