全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

移动机器人的可变遗忘因子离散迭代学习控制

Keywords: 移动机器人,迭代学习控制,遗忘因子,轨迹跟踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高迭代学习控制方法在移动机器人轨迹跟踪问题中的收敛速度,提出了一种带有可变遗忘因子的离散迭代学习控制算法.该算法是在开闭环离散迭代学习控制律基础上,通过可变遗忘因子对上一次的控制量进行调节,并增加了带有可变遗忘因子的初始修正项.通过适当选取学习律中的初始控制输入,带遗忘因子的初始修正项可以避免迭代轨迹的大幅度摆动,从而可以使迭代学习的收敛速度得到显著提高.并利用范数理论对算法的收敛性进行了严格证明,得到了使算法收敛的范数形式的充分条件.最后通过仿真实验验证了所提算法的有效性.

References

[1]  FUKAO T, NAKAGAWA H, ADACHI N. Adaptive tracking control of a nonholonomic mobile robot[J]. IEEE Transactions on Robotics and Automation, 2005, 16(5):609-615.
[2]  UMESH K, NAGARAJAN S. Backstepping based trajectory tracking control of a four wheeled mobile robot [J]. International Journal of Advanced Robotic Systems,2008, 5(4): 403-410.
[3]  CHEN N, SONG F, LI G, et al. An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18
[4]  (10): 2885-2899.
[5]  ROSSOMANDO F G, SORIA C, CARELLI R. Sliding mode neuro adaptive control in trajectory tracking for mobile robots [ J ]. Journal of Intelligent & Robotic Systems, 2014, 74: 931-944.
[6]  HAMERLAIN F, FLOQUET T, PERRUQUETTI W.Experimental tests of a sliding mode controller for trajectory tracking of a car-like mobile robot[ J]. Robotica, 2014,32(1): 63-76.
[7]  SUN T, PEI H, PAN Y, et al. Robust adaptive neural network control for environmental boundary tracking by mobile robots [ J ]. International Journal of Robust and Nonlinear Control, 2013, 23(2): 123-136.
[8]  YE J. Tracking control of two-wheel driven mobile robot using compound sine function neural networks [ J ]. Connection Science, 2013, 25(2 / 3): 139-150.
[9]  RESENDEA C Z, CARELLIB R, SARCINELLI M. A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains [ J ]. Control Engineering Practice, 2013, 21(10): 1302-1309.
[10]  CHEN Y H, LI T H S. PD type fuzzy trajectory tracking control design for mobile robots[J]. Journal of Science and Innovation, 2013, 3(2): 45-51.
[11]  ARIMOTO S, KAWAMURA S, MIYAZAKI F. Bettering operation of robots by learning [ J]. Journal of Robotic Systems, 1984, 1(2): 123-140.
[12]  WANG Y, NIU J J. Iterative learning control algorithm with a fixed step [ J]. Chinese Journal of Mechanical Engineering, 2011, 24(4): 669-675.
[13]  PIPELEERS G, MOORE K L. Reduced-order iterative learning control and a design strategy for optimal performance tradeoffs [ J ]. IEEE Transactions on Automatic Control, 2012, 57(9): 2390-2395.
[14]  曹伟, 丛望, 孙明. 初态学习下时滞非线性系统的迭代学习控制[ J]. 仪器仪表学报, 2012, 33(2): 315-320.CAO Wei, CONG Wang, SUN Ming. Iterative learning
[15]  control with initial state study for nonlinear time-delay system [ J ]. Chinese Journal of Scientific Instrument,2012, 33(2): 315-320. (in Chinese)
[16]  兰永红, 何吕君, 黄辉先, 等. 分数阶非线性时滞系统的 P 型迭代学习控制[ J]. 系统工程与电子技术,2013, 35(5): 1070-1074.LAN Yong-hong, HE Lü-jun, HUANG Hui-xian, et al.Iterative learning control of variable index gain with initial state study [ J]. Systems Engineering and Electronics,2013, 35(5): 1070-1074. (in Chinese)
[17]  LI B Q, LIN H, XING H L. Adaptive adjustment of iterative learning control gain matrix in harsh noise environment [ J]. Journal of Systems Engineering and Electronics, 2013, 24(1): 128-134.
[18]  KANG M K, LEE J S. Kinematic path-tracking of mobile robot using iterative learning control [ J ]. Journal of Robotic Systems, 2005, 22(2): 111-121.
[19]  阎世梁, 张华, 王银玲, 等. 极坐标下基于迭代学习的移动机器人轨迹跟踪控制[J]. 计算机应用, 2010,30(8): 2017-2020.YAN Shi-liang, ZHANG Hua, WANG Yin-ling, et al.Trajectory tracking of mobile robot using iterative learning control in polar coordinates [ J ]. Journal of Computer Applications, 2010, 30(8): 2017-2020. (in Chinese)
[20]  刘国荣, 张扬名. 移动机器人轨迹跟踪的模糊 PID-P型迭代学习控制[J]. 电子学报, 2013, 41(8): 1536-1541.LIU Guo-rong, ZHANG Yang-ming. Trajectory tracking
[21]  of mobile robots based on fuzzy PID-P type iterative learning control[ J]. Acta Electronica Sinica, 2013, 41(8): 1536-1541. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133