全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cu基量子点对TiO_2的敏化及其应用

Keywords: TiO2,Cu基量子点,敏化,制氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对染料和CdS等量子点敏化剂存在的不足,开发廉价、易合成、无毒无害、催化性能好且带隙较窄的Cu基量子点材料成为敏化剂研究的重点之一.综述了Cu基量子点对TiO2的敏化方式、Cu基量子点敏化TiO2的光响应性和电荷传递性能及在不同领域的应用的研究进展,并对Cu基量子点敏化TiO2在光催化制氢领域的研究重点进行了分析和总结.

References

[1]  KARKAS M D, JOHNSTON E V, VERHO O, et al.Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation [ J]. Accounts of Chemical Research, 2014, 47(1): 100-111.
[2]  FUJISHIMA A, HONDA K. Electrochemical photocatalysis of water at a semiconductor electrode[J].Nature, 1972, 238: 37-38.
[3]  SANG L X, ZHAO Y X, BURDA C. TiO2 nanoparticles as functional building [ J]. Chemical Reviews, 2014, 114(19): 9283-9318.
[4]  PARK J, YI J, TACHIKAWA T, et al. Guanidinium-enhanced production of hydrogen on Nafion-coated dye/TiO2 under visible light[J]. Phys J Chem Lett, 2010, 1(9): 1351-1355.
[5]  LI L, DUAN L L, XU Y H, et al. A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2 [J]. Chem Commun, 2010, 46(39):7307-7309.
[6]  PAN L, ZOU J J, ZHANG X W, et al. Water-mediated promotion of dye sensitization of TiO2 under visible light[J]. J Am Chem Soc, 2011, 133(26): 10000-10002.
[7]  杨健茂, 胡向华, 田启威, 等. 量子点敏化太阳能电池研究进展[J]. 材料导报A: 综述篇, 2011, 25(23): 1-4.YANG Jian-mao, HU Xiang-hua, TIAN Qi-wei, et al.
[8]  Progress of quantum dot research sensitized solar cells[J].Materials Review, 2011, 25(23): 1-4. (in Chinese)
[9]  刘锋, 朱俊, 魏俊峰, 等. 量子点敏化太阳电池[J].化学进展, 2013, 25(2/3): 309-418.LIU Feng, ZHU Jun, WEI Jun-feng, et al. Quantum dot-sensitized solar cells[J]. Progress in Chemistry, 2013,25(2/3): 309-418. (in Chinese)
[10]  KIM M R, MA D L. Quantum-dot-based solar cells:recent advances, strategies, and challenges[J]. J Phys Chem Lett, 2015, 6(1): 85-99.
[11]  MAKAROV N S, MCDANIEL H, FUKE N, et al.Photocharging artifacts in measurements of electron transfer in quantum-dot-sensitized mesoporoustitania films [J]. J Phys Chem Lett, 2014, 5(1): 111-118.
[12]  YU Z M, MENG J L, XIAO J R, et al. Cobalt sulfide quantum dots modified TiO2 nanoparticles for efficient photocatalytic hydrogen evolution [ J]. International of Hydrogen Energy, 2014, 39(28): 15387-15393.
[13]  ZHANG S S, PENG B Y, YANG S Y, et al. Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light [ J ]. International of Hydrogen Energy, 2015, 40(1): 303-310.
[14]  CAO F F, WANG H, XIA Z H, et al. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells[J]. Materials Chemistry and Physics, 2015,149-150: 124-128
[15]  ZHANG H, CHENG Y, HOU Y M, et al. Efficient CdSe quantum dot-sensitized solar cell prepared by postsynthesis assembly approch [ J]. Chem Commun,2012, 48: 11235-11237.
[16]  李净煜, 曹立新, 苏革, 等. CdS 量子点沉积的钛基纳米管的制备及其光催化性能研究[J]. 化工新型材料,2013, 41(4): 72-74.LI Jing-yu, CAO Li-xin, SU Ge, et al. Synthesis and photocatalytic activity of CdS quantum dot coupled
[17]  titanatenanotubes[J]. New Chemical Materials, 2013,41(4): 72-74. (in Chinese)
[18]  张晓敏, 桑丽霞, 陈永昌, 等. CdS 化学修饰TiO2 纳米管阵列电极的传质特性分析[J]. 工程热物理学报,2012, 33(7): 1221-1224.ZHANG Xiao-min, SANG Li-xia, CHEN Yong-chang, et al. Mass transfer properties of CdS modified TiO2 nanotube arrays electrodes [ J ]. Journal of Engineering
[19]  Thermophysics, 2012, 33(7): 1221-1224. (in Chinese)
[20]  LEE H J, CHEN P, MOON S J, et al. Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator [ J]. Langmuir, 2009, 25(13): 7602-7608.
[21]  SANG L X, TAN H Y, ZHANG X M, et al. Effect of quantum dot deposition on the interfacial flatband potential, depletion layer in TiO2 nanotube electrodes,and resulting H2 generation rates [ J]. The Journal of Physical Chemistry, 2012, 116(35): 18633-18640.
[22]  LIU L P, HENSEL J, FITZMORRIS R C, et al.Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures [ J]. J Phys Chem Lett, 2010, 1(1): 155-160.
[23]  JUMABEKOV A N, SIEGLER T D, CORDES N, et al.Comparison of solid-state quantum-dot-sensitized solar cells with ex situ and in situ grown PbS quantum dots [J]. J Phys Chem C, 2014, 118(45): 25853-25862.
[24]  JUMABEKOV A N, DESCHLER F, BOHM D, et al.Quantum-dot-sensitized solar cells with water-soluble and air-stable PbS quantum dots[J]. J Phys Chem C, 2014,118(10): 5142-5149.
[25]  ZHANG Y H, ZHU J, YU X C, et al. The optical and electrochemical properties of CdS/ CdSe co-sensitized TiO2 solar cells prepared by successive ionic layer adsorption and reaction processes [ J]. Solar Energy,2012, 86(3): 964-971.
[26]  PAN Z X, MORA-SERO I, SHEN Q, et al. High-efficiency “Green冶quantum dot solar cells[J]. J Am Chem Soc, 2014, 136(25): 9203-9210.
[27]  JARA D H, YOON S J, STAMPLECOSKIE K G, et al.Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells [ J]. Chem Mater,2014, 26(24): 7221-7228.
[28]  SUN Q, LI Y, SUN X M, et al. Improved photoelectrical performance of single-crystal TiO2 nanorod arrays by surface sensitization with copper quantum dots[J]. ACS Sustainable Chem Eng, 2013, 1(7): 798-804.
[29]  ANDRONIC L, ISAC L, DUTA A. Photochemical synthesis of copper sulphide/ titanium oxide photocatalyst [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2011, 221(10): 30-37.
[30]  LIN M C, LEE M W. Cu2 - x S quantum dot-sensitized solar cells[J]. Electrochemistry Communications, 2011,13(12): 1376-1378.
[31]  ZHAO Y X, PAN H C, LOU Y B, et al. Plasmonic Cu2 - x S nanocrystals: optical and structural properties of copper-deficient copper(Ⅰ) sulfides[J]. J Am Chem
[32]  Soc, 2009, 131(12): 4253-4261.
[33]  孙琼, 李阳, 孙先淼, 等. CuO 和CuS 量子点修饰单晶TiO2 纳米棒阵列及光电转化性能表征[J]. 中国科技论文, 2014, 9(2): 218-223.SUN Qiong, LI Yang, SUN Xian-miao, et al. CuO and CuS quantum dot sensitized single-crystal TiO2 nanorod arrays and their photoelectrical performance[J]. China
[34]  Sciencepaper, 2014, 9(2): 218-223.
[35]  RATANATAWANATE C, BUI A, VU K, et al. Low-temperature synthesis of copper(II) sulfide quantum dot decorated TiO2 nanotubes and their photocatalytic properties[J]. J Phys Chem C, 2011, 115(14): 6175-
[36]  6180.
[37]  ZHANG J F, WANG Y, SHEN T K, et al. Preparation of Cu2 O/ TiO2 nanotube heterojunction arrays with enhanced photoelectrocatalysis performance [J]. Proc of SPIE Vol, 2014, 8923(51): 1-10.
[38]  LI L K, XU L L. Facile preparation and size-dependent photocatalytic activity of Cu2 O nanocrystals modified titania for hydrogen evolution [J]. International Journal of Hydrogen Energy, 2013, 38(2): 816-822.
[39]  ZHANG S S, WANG H J, YUNG M S, et al. Cu(OH)2 -modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production [ J ]. International Journal of Hydrogen Energy, 2013, 38(18): 7241-7245.
[40]  DANG H F, DONG X F, DONG Y C, et al. TiO2 nanotubes coupled with nano-Cu ( OH )2 for highly efficient photocatalytic hydrogen production [ J ].International Journal of Hydrogen Energy, 2013, 38(5):
[41]  2126-2135.
[42]  PENG Z Y, LIU Y L, ZHAO Y H, et al. Efficiency enhancement of TiO2 nanodendrite array electrodes in CuInS2 quantum dot sensitized solar cells [ J ].Electrochimica Acta, 2013, 111(30): 755-761.
[43]  PENG Z Y, LIU Y L, CHEN K Q, et al. Fabrication of the protonated pentatitanatenanobelts sensitized with CuInS2 quantum dots for photovoltaic applications [J]. Chemical Engineering Journal, 2014, 244(15): 335-342.
[44]  WANG Q Y, QIAO J L, ZHOU J, et al. Fabrication of CuInSe2 quantum dots sensitized TiO2 nanotube arrays for enhancing visible light photoelectrochemical performance[J]. Electrochimica Acta, 2015, 167(10): 470-475.
[45]  LIAO Y L, ZHANG H W, ZHONG Z Y, et al.Enhanced visible-photocatalytic activity of anodic TiO2 nanotubes film via decoration with CuInSe2 nanocrystals [J]. ACS Appl Mater Interfaces, 2013, 5(21): 11022-11028.
[46]  隋小涛, 楼贤春, 王雪莱, 等. 量子点敏化太阳能电池敏化剂的应用进展[J]. 建材世界, 2012, 33(5):1-3.SUI Xiao-tao, LOU Xian-chun, WANG Xue-lai, et al.
[47]  Progress in sensitizers for application to quantum dot-sensitized solar cells [ J ]. The World of Building Materials, 2012, 33(5): 1-3. (in Chinese)
[48]  WANG M Y, SUN L, LIN Z Q, et al. p-n heterojunctionphoto electrodes composed of Cu2 O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activitiest[J]. Energy Environ Sci, 2013, 6(4): 1211-1220.
[49]  张煜, 刘兆阅, 翟锦. Cu2 O/ TiO2 纳米管阵列异质结的制备及其可见光光电响应性质[J]. 化学学报,2013, 71: 793-797.ZHANG Yu, LIU Zhao-yue, ZHAI Jin. Preparation of Cu2 O/ TiO2 nanotube arrays heterojunction and their
[50]  photoelectrochemical response in visible light[J].Acta Chim Sinica, 2013, 71: 793-797. (in Chinese)
[51]  ZHANG S S, PENG B Y, YANG S Y, et al. The influence of the electrodeposition potential on the morphology of Cu2 O/ TiO2 nanotube arrays and their visible-light-driven photocatalytic activity for hydrogen evolution[J]. International Journal of Hydrogen Energy,
[52]  2013, 38(32): 13866-13871.
[53]  WANG Q Z, AN N, BAI Y, et al. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/ TiO2 [J]. International Journal of Hydrogen Energy, 2013, 38(25): 10739-10745.
[54]  LI D L, PAN C X. Fabrication and characterization of electrospun TiO2 / CuS micro-nan-scaled composite fibers[ J ]. Progress in Natural Science: Materials International, 2012, 22(1): 59-63.
[55]  LI T L, LEE Y L, TENG H. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells [ J]. J Mater Chem, 2011, 21(13): 5089-5098.
[56]  PAGES M, NIITSOO O, ITZHAIK Y, et al. Copper sulfide as a light absorber in wet-chemical synthesized extremely thin absorber (ETA) solar cells [J]. Energy Environ Sci, 2009, 2(2): 220-223.
[57]  ISAC L, DUTA A, KRIZA A, et al. Copper sulfides obtained by spray pyrolysis-possible absorbers in solid-state solar cells [J]. Thin Solid Films, 2007, 515(15):5755-5758.
[58]  WANG K J, LI G D, LI J X, et al. Formation of single-crystalline CuS nanoplates vertically standing on flat substrate[J]. Cryst Growth Des, 2007, 7(11): 2265-2267.
[59]  ROY P, SRIVASTAVA S K. Hydrothermal growth of CuS nanowires from Cu-dithiooxamide, a novel single-source precursor[J]. Cryst Growth Des, 2006, 6(8): 1921-1926.
[60]  SAGADE A A, SHARMA R. Copper sulphide (Cux S) as an ammonia gas sensor working at room temperature [J]. Sensors and Actuators B, 2008, 133(1): 135-143.
[61]  XU S P, SUN D D. Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO [J]. International Journal of Hydrogen Energy, 2009, 34(15): 6096-6104.
[62]  LI Z H, LIU J W, WANG D J, et al. Cu2 O/ Cu/ TiO2 nanotube ohmicheterojunction arrays with enhanced photocatalytic hydrogen production activity [ J ].International Journal of Hydrogen Energy, 2012, 37(8):6431-6437.
[63]  ZHANG S S, ZHANG S Q, PENG F, et al.Electrodeposition of polyhedral Cu2 O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance [ J ]. Electrochemistry Communications,
[64]  2011, 13(8): 861-864.
[65]  XI Z H, LI C J, ZHANG L, et al. Synergistic effect of Cu2 O/ TiO2 heterostructure nanoparticle and its high H2 evolution activity[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6345-6353.
[66]  SHALOM M, ALBERO J, TACHAN Z, et al. Quantum dot-dye bilayer-sensitized solar cells: breaking the limits imposed by the low absorbance of dye monolayers[J]. J Phys Chem Lett, 2010, 1(7): 1134-1138.
[67]  田慧. Cu2 O 修饰TiO2 纳米管的制备及其性能研究[D]. 合肥: 合肥工业大学材料科学与工程学院,2012.TIAN Hui. Preparation and properties of Cu2 O-modified
[68]  TiO2 nanotubes arrays[D]. Hefei: School of Materials Science and Engineering, Hefei University of Technology, 2012. (in Chinese)
[69]  薛晋波, 申倩倩, 李光亮, 等. TiO2 纳米管阵列负载不同形貌Cu2 O 薄膜的制备及光电性能研究[J]. 无机化学学报, 2013, 29(4): 729-734.XUE Jin-bo, SHEN Qian-qian, LI Guang-liang, et al.Preparation and photoelectric property of different morphologies Cu2 O loaded on TiO2 nanotube arrays films
[70]  [J]. Chinese Journal of Inorganic Chemistry, 2013, 29(4): 729-734. (in Chinese)
[71]  CHEN H N, ZHU L Q, LIU H C, et al. ITO porous film-supported metal sulfide counter electrodes for high- performance quantum-dot-sensitized solar cells [ J]. J Phys Chem C, 2013, 117(8): 3739-3746.
[72]  YANG Z, CHEN C Y, LIU C W, et al. Quantum dot-sensitized solar cells featuring CuS/ CoS electrodes provide 4-1% efficiency[J]. Adv Energy Mater, 2011, 1(2):259-264.
[73]  BISQUERT J, FABREGAT-SANTIAGO F, MOR-SERO I, et al. Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements [ J]. J Phys Chem C, 2009, 113(40): 17278-17290.
[74]  JIN Z L, ZHANG X J, LU G X, et al. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2 —investigation of different noble metal loading [ J]. Journal of Molecular Catalysis A: Chemical, 2006, 259(1/2): 275-280.
[75]  LI Y X, XIE C F, PENG S Q, et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution[J]. Journal of Molecular Catalysis A:Chemical, 2008, 282(1/2): 117-123.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133