全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

工业控制网络流量特性分析与建模

Keywords: 工业控制网络,流量特性,流量模型,乘积季节ARIMA

Full-Text   Cite this paper   Add to My Lib

Abstract:

采集了真实环境中的基于工业以太网的工业控制网络流量,通过对流量特性的分析发现其流量特性与普通IT网络流量特性的差异,并详细分析了其成因.通过分析发现,工业控制网络流量分布整体较规律,数据包时间间隔既不服从泊松分布又不服从重尾分布,小时间尺度上具有周期性,没有表现出自相似的特性,大时间尺度上则较为平稳.最后,应用季节乘积ARIMA模型对工业网络流量进行了实证分析.结果表明:应用该模型对工业网络流量进行建模预报是可行可靠的.

References

[1]  冯冬芹, 廖智军, 金建祥, 等. 基于以太网的工业控制网络实时通信模型研究[J]. 仪器仪表学报, 2005, 26(9): 891-894.FENG Dong-qin, LIAO Zhi-jun, JIN Jian-xiang, et al.Study on real-time communication models for Ethernet- based industrial control network[J]. Chinese Journal of Scientific Instrument, 2005, 26 ( 9 ): 891-894. ( in Chinese)
[2]  王浩, 吴中福, 王平. 工业控制网络安全模型研究[J].计算机科学, 2007, 34(5): 96-98. WANG Hao, WU Zhong-fu, WANG Ping. Research on security model for industrial control networks [ J ]. Computer Science, 2007, 34(5): 96-98. (in Chinese)
[3]  The University of Waikato. traffic traces [ EB/ OL ].[2014-01-10]. http://wand. net. nz/ wits/ Waikato/1/20040507-233830-64. php.
[4]  侯重远, 江汉红, 芮万智, 等. 工业网络流量异常检测的概率主成分分析法[J]. 西安交通大学学报, 2012,46(2): 70-75.HOU Zhong-yuan, JIANG Han-hong, RUI Wan-zhi, et al.A probabilistic principal component analysis approach for
[5]  detecting traffic anomaly in industrial networks [ J ].Journal of Xi'an Jiaotong University, 2012, 46(2): 70-75. (in Chinese)
[6]  袁小坊. IP 网络测量数据存储与流量建模研究[D].长沙: 湖南大学计算机与通信学院, 2010.YUAN Xiao-fang. The research on data storage and traffic modeling in IP network measurement [ D]. Changsha: Institute of Computer Science and Communication, Hunan University, 2010. (in Chinese)
[7]  张宾, 杨家海, 吴建平. Internet 流量模型分析与评述[J]. 软件学报, 2011, 22(1): 115-131.ZHANG Bin, YANG Jia-hai, WU Jian-ping. Survey and analysis on the Internet traffic model [ J]. Journal of Software, 2011, 22(1): 115-131. (in Chinese)
[8]  KARAGIANNIS T, MOLLE M, FALOUTSOS M, et al. A nonstationary poisson view of Internet traffic[C] //23rd AnnualJoint Conference of the IEEE Computer and Communications Societies. Hong Kong: IEEE, 2004, 3:1558-1569.
[9]  LELAND W E, TAQQU M S, WILLINGER W, et al. On the self-similar nature of Ethernet traffic [ C] //ACM SIGCOMM Computer Communication Review. New York:ACM, 1993, 23(4): 183-193.
[10]  韩忠玲. 分形高斯噪声Hurst 参数估计的实验评价[D]. 上海: 华东师范大学信息学院, 2008.HAN Zhong-ling. Experimental evaluation on methods of the Hurst parameter estimation using fractional Gaussian noise[D]. Shanghai: Institute of Information, East China Normal University, 2008. (in Chinese)
[11]  WILLINGER W, TAQQU M S, SHERMAN R, et al. Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level [J]. IEEE Transaction on Networking, 1997, 5(1): 71-86.
[12]  SHUMMAP R H. Time series analysis and its applications[M]. 2nd ed. New York: Springer, 2009: 42-56.
[13]  王燕. 应用时间序列分析[M]. 3 版. 北京: 中国人民大学出版社, 2012: 68-87.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133