CHESNEAU C, SHIRAZI E. Nonparametric wavelet regression based on biased data[J]. Communications in Statistics-Theory and Methods, 2014, 43: 2642-2658.
[2]
AHMAD I A. On multivariate kernel estimation for samples from weight distributions [J]. Statistics and Probability Letters, 1995, 22: 121-129.
[3]
CRISTOBAL J A, ALCALA J T. Nonparametric regression estimators for length biased data[J]. Journal of Statistical Planning and Inference, 2000, 89: 145-168.
[4]
NODA K. Estimation of a regression function by the parzen kernel-type density estimators[J]. Annals of the Institute of Statistical Mathematics, 1976, 28(1): 221-234.
[5]
YOGENDRA C P, JUN L. Generalized kernel regression estimator for dependent sized-biased data[J]. Journal of Statistical Planning and Inference, 2012, 142: 708-727.
[6]
DELYON B, JUDITSKY A. On minimax wavelet estimators [ J ]. Applied and Computational Harmonic Analysis, 1996, 3: 215-228.
[7]
PATIL P. On the choice of smoothing parameter, threshold and truncation in nonparametric regression by non-linear wavelet methods [ J]. Journal of the Royal Statistical Society: Series B, 1996, 58(2): 361-377.
[8]
MEYER Y. Ondelettes et operateurs [ M ]. Paris:Hermann, 1990: 29-86.
[9]
LONG R L. Multivarate wavelet analysis[M]. Beijing: Word Library, 1995: 47-115.
[10]
HARDLE W, KERKYACHARIAN G, PICARD D, et al.Wavelets, approximation and statistical application[M]. New York: Springer-Verlag, 1997: 67-85.