[1] | 5 Pukelsheim F. Examples for unbiased non-negative estimation in variance component models. TechnicalReport 113. Dept of statistics, Standford University. Standford. California. 1978
|
[2] | 6 Pukelsheim F. On the existence of unbiased nonnegative estimater of variance covariance components.Ann Stat, 1981, 9. 293-299
|
[3] | 7 Baksalary J K. Molinska A. Non-negative unbiased estimability of linear combinations of two variancecomponents. J Stat Planning and Inference, 1984, 10.1-8
|
[4] | 8 Mathew T. On non-negative quadratic unbiased estimability of variance componets. Ann Stat, 1984, 12:1566-1569
|
[5] | 9 Mathew T. Optimum invariant tests in mixed linear model s with two variance components. In: Statistical Data Analysis and Inference. (Y Dodge, Ed) North-Holland, Amsterdam, 1989. 381-388
|
[6] | 10 Giesbrecht F G. MIXMOD, a SAS procedure for analysing mixed models. Technical report 1659,Institute of Statistics, North Carolina State University, Raleigh, North Carolina. 1985
|
[7] | 11 Callanan T P, Harville D A. Some new algorithms for compnting maxium likelihood estimates ofvariance components. In Computer Science and Statistics: Proceedings of the 21st Symposium on theInterface(K Berk and L Malone, eds.), Amer stat Assoc, 1429 Duke streer, Alexandria, Virginia,1989. 435-444
|
[8] | 12 Jennrich R J, Schluchter M D. Unbalanced repeated measures models with structured covariance matrices.\Biometrics, 1986, 42: 805-820
|
[9] | 13 Casella G, Berger R L. Statistical inference. Wadsworth and brooks/Cole, Pacific Grove, California. 1990
|
[10] | 14 Graser H-U, Smith S P, Tier B. A derivative-free approach for estimating variance components inanimal models by restricted maximum likeelihood. J Animal Sci, 1987, 64: 1362-1370
|
[11] | 15 Jennrich R J, Sampson P E Newton-Raphson and related algorithms for maximum likelihood variancecomponent estimation. Technometrics, 1976, 18: 11-17
|
[12] | 16 Lindstrom M J, Bates D M. Newton-Raphson and EM algorithms for linear mixed-effects models forrepeated measures data. J Amer Stat Assoc, 1988, 83. 1014-1022
|
[13] | 17 Townsend E C Unbiased estimators of variance components in simple unbalanced designs. Ph D ThesisComed University, Ithace New York. 1968
|
[14] | 18 Harville D A. Quadratic unbiased estimation of variance components for the one-way classification.Biometrika, 1969, 56: 313-326
|
[15] | 19 Rao C R Estimation of heteroscedastic variances in linear models. J Amer Stat Assoc, 1970, 65:161-172
|
[16] | 20 Rao C R Estimation of variance and covariance components in linear models. J Amer Stat Assoc,1972, 67: 112-115
|
[17] | 21 Brown K G. Asymptotic behavior of MINQUE-type estimators of variance components. Ann Stat. 1976,4: 746-754
|
[18] | 22 Hocking R R, Kutner M H. Some analytical and numerical comparisons of estimators for the mixedA O V model. Biometrics, 1975, 31: 19-28
|
[19] | 23 Rao C K Kleffe J. Estimation of Variance Components and Applications. North-Holland, Amsterdam, 1988
|
[20] | 24 Anderson R D. Studies on the estimation of variance components. Ph D Thesis, Cornell University,Ithaca, New York. 1978
|
[21] | 25 Brown K G. Estimation of variance components using residuals. J Amer Stat Assoc, 1978, 73: 141-146
|
[22] | 1 Airy G B. On the algebraical and numerical theory of errors of obserrations and the combination ofobservations. Macmillan. London, 1861
|
[23] | 2王松桂.线性模型的理论及其应用.合肥:安徽教育出版社,1987
|
[24] | 3王松桂,邓永旭.方差分量的改进估计.应用数学学报,1999,22:115~125
|
[25] | 4 Seely J. Linear spaces and unbiased estimation-application to the mixed model. Ann Math Stat, 1970, 41:1735-1748
|
[26] | 26 Montgomery D C. Design and Analysis of Experiments, third Edition, Wiley, New York, 1991
|
[27] | 27 Searle S K Linear model. Wiley, New York. 1971
|
[28] | 28 Wald A. Snote on regression analysis. Annals of Mathematical Statistica, 1947, 18: 586-589
|
[29] | 29 Seely J F, EI-Bassiouni Y. Applying Wald's variance component test. Annals of Statistica, 1983, 11:197-201
|
[30] | 30 Westfall P H. Power Comparision for invariant variance ratio tests in mixed ANOVA models. Annals ofStatistics, 1989, 17: 318-326
|
[31] | 31 Lin T H, Harville D A. Some alternatives to Wald's confidence interval and test. J Amer Stat Assoc,1991, 86: 179-187
|
[32] | 32 Hirotsu C. An F a
|