全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

简支柔性梁的非线性动力学和分叉

Keywords: 柔性梁,非线性动力学,分叉,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了轴向激励作用下简支柔性梁的非线性动力学和分叉,导出了简支梁在参数激励作用下具有五次非线性项的运动方程,分析了局部分叉和稳定性.利用多尺度法得到了柔性梁的平均方程,借助于数值方法研究了柔性梁的局部分叉.

References

[1]  ARIARATNAM S T, XIE W C. Chaotic motion under parametric excitation[J] . Dynamics and Stability ofSystems, 1989, 4: 111-130.
[2]  BALACHANDRAN B, NAYFEH A H. Observations of modal interactions in resonantly forced beam-mass structures[J].Nonlinear Dynamics 1991, 2: 77-117.
[3]  RESTUCCIO J M, KROUSGRILL C M, BAJAJ A K. Nonlinear nonplanar dynamics of a parametrically excitedinextensional elastic beam[J]. Nonlinear Dynamics, 1991, 2: 263-289.
[4]  ABOU-RAYAN A M, NAYFEH A H, MOOK D T, et al . Nonlinear response of a parametrically excitedbuckled beam[J]. Nonlinear Dynamics, 1993, 4, 499-525.
[5]  SVENSSON I. Dynamic buckling of a beam with transverse constraints[J] . Nonlinear Dynamics, 1996, 11,315-328.
[6]  CHIN C M, NAYFEH A H. Three-to-one internal resonance in hinged-clamped beams[J]. Nonlinear Dynamics,1997, 12:. 129-154.
[7]  ARAFAT N H, NAYFEH A H, CHIN C M. Nonlinear nonplanar dynamics of parametrically excited cantileverbeams[J]. Nonlinear Dynamics, 1998, 15: 31-61.
[8]  SIDDIQUI S A, GOLNARAGHI M F, HEPPLER G R. Dynamics of a flexible cantilever beam carrying amoving mass[J]. Nonlinear Dynamics, 1998, 15: 137-154.
[9]  KREIDER W , NAYFEH A H. Experimental investigation of single-mode responses in fixed-fixed buckledbeam[J]. Nonlinear Dynamics, 1998, 15: 155-177.
[10]  LACARBONARA W, NAYFEH A H, KREIDER W. Experimental validation of reduction methods for nonlinearvibrations of distributed-parameter system: analysis of a buckled beam[J]. Nonlinear Dynamics, 1998, 17: 95-117.
[11]  LENCI S, MENDITTO G, TARANTION A M. Homoclinic and heteroclinic bifurcations in the non-lineardynamics of a beam resting on an elastic substrate[J]. International Journal of Non-linear Mechanics, 1999, 34:615-632.
[12]  NAYFEH A H, LACARBONARA W, CHIN C M. Nonlinear normal modes of buckled beam: three-to-one andone-to-one internal resonances[J]. Nonlinear Dynamics, 1999, 18: 253-273.
[13]  ZHANG W, WANG F X, WEN H B. Codimension-3 degenerate bifurcation in the flexible beam[J]. submittedfor publication.
[14]  NAYFEH A H, MOOK D T. Nonlinear Oscillations[M]. New York: Wiley-Interscience, 1979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133