GABOUR L A, LIENHARD V I H. Wall roughness effects on stagnation point heat transfer beneath an impinging liquid jet [J]. J Heat Transfer, 1994, 116: 81-86.
[2]
KATAOKA K, SUGURO M. The effect of surface renewal due to large scale eddies on jet impingement heat transfer [J]. Int J Heat Mass Transfer, 1987, 30: 559-563.
[3]
HOOGENDOORN C J. The effect of turbulence on heat transfer at a stagnation point [I]. Int J Heat Mass Transfer, 1977,20: 1333-1338.
[4]
STEVENS J, PAN Y, WEBB B W. Effect of nozzle configuration on transport in the stagnation zone of axisymmetric, impinging free-surface liquid jets: Part I Turbulent flow structure [J]. J Heat Transfer, 1992, 114:874-879.
[5]
WOMAC D I, REMADHYAM S. Correlating equations for impingement cooling of small heat sources with single circular liquid jets [J]. J Heat Transfer, 1993, 115: 106-115.
[6]
PAN Y, STEVENS J, WEBB B W. Effect of nozzle configuration on transport in the stagnation zone of axisymmetric, impinging free-surface liquid jets: Part II Local heat transfe [J] . J Heat Transfer, 1992, 114:8 80-88 5.
[7]
VAN G J, SIMONEAU R 1. Influence of turbulence parameters, Reynolds number, and body shape on stagnation-region heat transfer [J]. J Heat Transfer, 1995, 117: 597-603.
[8]
GARIMELLA V 5, NENAYDYKH B. Nozzle geometry effects in liquid jet impingement heat transfer [J]. Int J Heat Mass Transfer, t996, 39: 291 5-2920.
[9]
LYTLE D, WEBB B W. Air jet impingement heat transfer at low nozzle plate spacings [J]. Int J Heat Mass Transfer, 1994(37), 1687-1692.
[10]
GARDON Robert, AKHRAT J Cahit. The role of turbulence in determining the heat-transfer characteristics of impinging jets [I]. Int J Heat Mass Transfer, 1965, 8: 1261-1271.
[11]
FITZGERALD Janice A, GERIMELLA Suresh V. A study of the field of a confined and submerged impinging jet [J]. Int J Heat Mass Transfer, 1998, 41: 1025-1030.
[12]
COLUCCI D W, VISKANTA R. Effect of nozzle geometry on local convective heat transfer to a confinedimpinging air jet [J]. Experimental Thermal and Fluid Science, 1986, 13: 71-80.
[13]
LI D Y, GUO Z Y, MA C F. Relationship between the recovery factor and the viscous dissipation in a confined, impinging, circular jet of high Prandtl number liquid[J]. Int J Heat and Fluid Flow, 1997, 18: 585-589.
[14]
LAW H S, MASLIYAH I H. Mass transfer due to a confined laminar impinging two-dimensional jet[J]. In J Heat Mass Transfer, 1984, 27: 529-539.
[15]
WEBB B W, MA C F Single phase liquid jet impingement heat transfer [J]. Advances in Heat Transfer, 1995, 26: 105-217.
[16]
SUN H1, MA C F, NAIKAYAMA W. Local characteristics of convective heat transfer from simulated microelectronic chips to impinging submerged round water jets [J]. J Electronic Packaging, 1993, 115: 7 1-75.
[17]
STEVENS I, WEBB B W. Local heat transfer coefficients under an axisymmetric, single--phase liquid jet [J]. J Heat Transfer, 1991, 113: 71-77.
[18]
SAN I Y, HUNG C H, SHU M H. Impingement cooling of ,confined circular air jet [J] J Heat Mass Transfer, 1997, 40: 1355-1364.
[19]
FITZGERALD J A, GARIMELLA S V. flow field effects on heat transfer in confined jet impingement [J]. J Heat Transfer, 1997, 118(8): 630-632.
[20]
ELISON B, WEBB W B. Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regions [J]. Int J Heat Mass Transfer, 1994, 37: 1207-1212.
[21]
GARIMELLA S V, RICE R A. Confined and submerged liquid jet impingement heat transfer [J] J Heat Transfer, 1995, 117: 871-877.