全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义KdV方程的精确行波解(英文)

Keywords: 行波解,非线性物理模型,两步假设法

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用两步假设法,得到非线性物理模型中的KdV型方程的精确行波解.如广义奇数阶(五阶、七阶)KdV方程和广义KdV-Barges方程.

References

[1]  GARDNER C S, KRUSKAL J M, MIURA R M. Method for solving the Koeteweg-de Vries equation[J]. Phys Rev Lett, 1967, 19: 1095-1105.
[2]  MATSUNO Y. Bilinear transform method[M]. London: Academic Press, 1984.
[3]  WEISS J, TABOR M, GARNEVADE G. The painleve property for partial differential equations[J]. J Math Phys,1983, 24: 522-543.
[4]  WANG M L. Exact solutions for a combined KdV-Burgers equation[J]. Phys Lett, 1996, A213: 279-287.
[5]  FENG X. Exploratory approach to explicit solution of nonlinear evolution equation[J]. Inter J Theor Phys, 2000,39(1): 207-222.
[6]  DEY B,KHARE A, KUMAR C N. Stationary solitons of the fifth-order KdV-type equations and theirstabilities[J]. Phys Lett, 1996, A233: 449-452.
[7]  FENG X. Reviews on analytical solutions to the KdV related equations[J]. J Jishou Univ, 1998, 19: 6-14.
[8]  YNAG Z J. Travelling wave solutions to nonlinear evolution and wave equations[J]. J Phys: A Math Gen, 1994,27: 2837-2855.
[9]  XIONG S L. An analytical solution to Burgers-KdV equation[J]. Chin Sci Bull, 1989, 34(1): 26-29.
[10]  FAN E G, ZHANG H Q. A note on the homogeneous balance method[J]. Phys Lett, 1998, A246: 403-406.
[11]  PARKES E J, DUFFY B R Traveling solitary wave solutions to a compound KdV-Burgers equation[J]. Phys Lett, 1997, A229: 217-220.
[12]  YAMATOTO Y, TAKIZAWA E. On a solution of nonlinear time-evolution equation of fifth order[J]. J PhysSoc Japan, 1981, 50: L1421-1422.
[13]  COFFEY M W. On series expansions giving closed-form solutions to Korteweg-de Vries equations[J]. SIAM JAppl Math, 1990, 50: 1580-1592.
[14]  HEREMAN W. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraicmethod[J]. J Phys: A Math Gen, 1986, 19: 607-628.
[15]  FEREMAN W, TAKAOKA M. Solitary wave solutions of nonlinear evolution and wave equationusing a directmethod and MACSYMA[J]. J Phys: A Math Gen, 1990, 23: 4805-4822.
[16]  NOZAKI K. Hirota's method and the singular manifold expansion[J]. J Phys Soc Japan, 1987, 57:3052-3054.
[17]  HUANG G, LUO S, DAI X. Exact and explicit solitary waive solutions to a model equation for shallow water[J].Phys Lett, 1989, A139: 373-374.
[18]  DAI X, DAI J. Some solitary wave solutions for families of generalized higher oder KdV equations[J]. PhysLett, 1989, A142: 367-370.
[19]  YANG Z J. Exact solitary wave solutions to a class of generalized odd-order KdV equations[J]. Int J TheorPhys, 1995, 34(4): 641-647.
[20]  DAI J, DAI X. A set of exact and explicit solitary wave solutions for a calss of generalized KdV equationswith arbitrarily odd order derivatives( a sieving method in a closed function calss)[J]. Phys Lett, 1990, A146(6):324-328.
[21]  MA W. Travelling wave solutions to a seventh order generalized KdV equation[J] . Phys Lett, 1993, A180:221-224.
[22]  ZHU Z. Solitary wave solutions to the 2n+1 order KdV-type equations[J]. Acta Phys Sin, 1996, 45:1777-1781.
[23]  DUFFY B R, PARKES E J. Travelling solitary waves solutions to a seventh-order generalized KdV equation[J].Phys Lett, 1996, A214: 271-272.
[24]  KARPMAN V I. Radiating solitons of the fifth order KdV-type equations[J]. Phys Lett, 1996, A210: 77-84.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133