全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于归纳逻辑程序设计的特异规则挖掘

Keywords: 归纳逻辑程序设计,关系数据挖掘,特异规则

Full-Text   Cite this paper   Add to My Lib

Abstract:

从关系数据挖掘的角度提出了挖掘特异规则的方法,该方法通过面向属性的方法来识别特异数据.借鉴Chi2算法的思想实现了特异数据的离散,并定性地描述了数据的特异程度,结合经典的归纳逻辑程序设计系统FDIL,自然地挖掘出了特异规则,突破了传统命题级数据挖掘的框架.试验结果表明利用该方法能够发现被传统的关联规则挖掘算法所忽略的有价值的知识.

References

[1]  AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large database[A].Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data[C]. Washington: ACM,1993. 207-216.
[2]  ZHONG N, YAO Y, OHSUGA S. Peculiarity oriented multi-database mining[A]. In: ZYTKOW J, RAUCH J.Principles of Data Mining and Knowledge Discovery[M]. Berlin: Springer-Verlag, 1999. 136-146.
[3]  NIECHUYS S, WOLF R Foundations of Inductive Logic Programming[M]. Berlin: Springer, 1997. 163-177.
[4]  FAYYAD U Knowledge discovery in databases: An overview[A]. In: DZEROSKI S, LAVRAC N. RelationalData Mining[C]. Berlin: Springer, 2001. 29-47.
[5]  QUINLAN J. Learning logical definitions from relalions[J]. Machine Learning, 1990, 5: 239-266.
[6]  ZHONG N, YAO Y, OHSHIMA M, et al. Interestingness, peculiarity, and multi-database mining[A]. Proc 2001IEEE International Conference on Data Mining (IEEE ICDM'0l)[C]. Washington: IEEE Computer Society, 2001. 566-573.
[7]  LIU H, SETIONO R Feature selection via discretization of numeric attributes[J]. IEEE Trans Knowledge and DataEng, 1997, 9(4) : 642-645.
[8]  LIN T. Granular computing on binary relations 1: Data mining and neighborhood systems[A]. In: POLKOWSKI L,SKOWRON A. Rough Sets in Knowledge Discovery 1, in Studies in Fuzziness and Soft Computing Series[C].Heidelberg: Physica-Verlag, 1998. 107-121.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133