TSUTSUMI K, MATSUMOTO H. Neural computation and learning strategy for manipulator position control[A].IEEE First Int Conf on Neural Network[C]. San Diego: SOS Printing, 1987. 525-534.
[2]
MARQUES S J C, BAPTISTA L F, da COSTA J S. Force control of robot manipulators with neural networks compensation: a comparative study[A]. IEEE: Int Symp Ind Electron[C]. Piscataway: IEEE, 1997. 872-877.
[3]
GUEZ A, EILBERT J, KAM N. Neuromorphic architecture for adaptive robot control: a preliminary analysis[A].IEEE First Int Conf on Neural Network[C]. San Diego: SOS Printing, 1987. 567-572.
[4]
YABUTA T, TSUJIMURA T, YAMADA T, et al. On the characteristics of the robot manipulator controller using neural networks[A]. Proc Int Workshop Ind Appl Machine Intell Vision[C]. Piscataway: IEEE, 1989. 76-81.
[5]
MAASS R, ZAHN V, ECKMILLER R. Neural force/position control in Cartesian space for a 6DOF industrial robot:Concept and first results[A]. IEEE Int Conf on Neural Networks-Conf Proc 3[C]. Piscataway: IEEE, 1997. 1744-1748.
[6]
ZHENG Y, CHEN W, YOU B, et al. Robotic hybrid position/force control using artificial neural network[J].Proc SPIE Int Soc Opt Eng, 1995, 26(20) : 603-607.
[7]
JUNG S, HSIA T C. On neural network application to robust impedance control of robot manipulators[A].IEEE Int Conf Rob Autom[C]. Rscataway: IEEE, 1995. 869-874.
[8]
FUKUDA T, KURIHARA T, TOKITA M, et al. Position and force hybrid control of robotic manipulator by neural network[J]. Trans of JSME, Part C, 1990, 56(527) : 1854-1860.
[9]
SAADIA N, AMIRAT Y, PONTNAU J, et al. Neural hybrid control of menipulators, stability analysis[J].Robotica, 2001, 19 (1) : 41-51.
[10]
ABU-ZITAR R, NUSEIRAT A M. Neural network approach to the frictionless grasping problem[J]. J of Intelligent and Rob Sys Theor & Appl,2000, 29(1) : 27-45.
[11]
KIGUCHI K, FUKUDA T. Fuzzy neural friction compensation method of robot manipulation during position/force control[A]. Proc IEEE Int Conf Rob Autom[C]. Piscataway: IEEE, 1996. 372-377.
[12]
KIGUCHI K, FUKUDA T. Fuzzy-neuro position / force control of robot manipulators-two-stage adaptation approash[A]. IEEE Int Conf Intell Rob Syst[C]. Piscataway: IEEE, 1999. 448-453.
[13]
KIGUCHI K, FUDUDA T. Position / force control of robot manipulators for geometrically unknown objects using fuzzy neural networks[J]. IEEE Trans Ind Electron, 2000, 47(3) : 641-649.
[14]
KWAN C M, YESILDIREK A, LEWIS F L. Robust foree/motion control of constrained robots using neural network[A]. Proc IEEE Conf Decis Control[C]. Piscataway: IEEE, 1994. 1862-1867.
[15]
HU S, ANG H H Jr, KRISHNAN H. Neural network controller for constrained robot manipulators[A]. Proc IEEE Int Conf Rob Autom[C]. Piscataway: IEEE, 2000. 1906-1911.
[16]
FUJIMOTO S, OHSAKA K, ONO T. Robust trajectory tracking control of robot manipulators for high precision[J]. Trans of the JSME, Part C, 1994, 60(574) : 2071-2077.
[17]
FUKUDA T, SHIBATA T, TOKITA M, et al. Adaptation and learning for robotic manipulator by neural network[A]. Proc IEEE Conf Decis Control[C]. Piscataway: IEEE, 1990. 3283-3288.
[18]
FUKUDA T, SHIBATA T, TOKITA M, et al. Neural network application for robotic motion control--Adaptation and learning[A]. Int Jt Conf Neural Networks, IJCNN 90, Part 3 (of 3) [C]. Piscataway: IEEE,1990. 447-451.
[19]
GUEZ A, AHMAD Z. Solution to the inverse Kinematics problem in robotics by neural networks[A]. IEEE Int Conf on Neural Networki[C]. San Diego: IEEE, 1988. 617-624.
[20]
ELSLEY R K. Learning architecture for control based on back-propagation neural networks[A]. IEEE Int Conf on Neural Networks[C]. San Diego: IEEE, 1988. 587-594.
[21]
YEUNG D Y, GEKEY G A. Using a context-sensitive learning for robot arm control[A]. IEEE Int Conf Rob Autom[C]. Piscataway: IEEE, 1989. 1441-1447.
[22]
LIN S T, TZENG S J. Neural network force control for industrial robots[J]. J Intell Rob Syst Theor Appl,1999, 24(3) : 253-268.
[23]
HWANG Y, TODO I. Cooperative control of two direct-drive robots using neural networks[J]. JSME I