全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

神经网络在机器人控制中的研究进展

Keywords: 神经网络,机器人,控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对近10年来,国内外学者和工程技术人员在机器人神经网络控制领域中所发表的文献进行分析比较,概述了神经网络在该领域内的研究现状与进展;按照神经网络与机器人不同研究方向的结合,分别介绍了国内外学者在本领域所取得的成功的理论和方法;在当前最新研究成果的基础上,若能将神经网络与柔性机器人、冗余机器人和协调机器人结合起来,将是机器人研究的又一重要方向。此外,神经网络在机器人系统中的实际应用也是今后努力的方向之一。

References

[1]  TSUTSUMI K, MATSUMOTO H. Neural computation and learning strategy for manipulator position control[A].IEEE First Int Conf on Neural Network[C]. San Diego: SOS Printing, 1987. 525-534.
[2]  MARQUES S J C, BAPTISTA L F, da COSTA J S. Force control of robot manipulators with neural networks compensation: a comparative study[A]. IEEE: Int Symp Ind Electron[C]. Piscataway: IEEE, 1997. 872-877.
[3]  GUEZ A, EILBERT J, KAM N. Neuromorphic architecture for adaptive robot control: a preliminary analysis[A].IEEE First Int Conf on Neural Network[C]. San Diego: SOS Printing, 1987. 567-572.
[4]  YABUTA T, TSUJIMURA T, YAMADA T, et al. On the characteristics of the robot manipulator controller using neural networks[A]. Proc Int Workshop Ind Appl Machine Intell Vision[C]. Piscataway: IEEE, 1989. 76-81.
[5]  MAASS R, ZAHN V, ECKMILLER R. Neural force/position control in Cartesian space for a 6DOF industrial robot:Concept and first results[A]. IEEE Int Conf on Neural Networks-Conf Proc 3[C]. Piscataway: IEEE, 1997. 1744-1748.
[6]  ZHENG Y, CHEN W, YOU B, et al. Robotic hybrid position/force control using artificial neural network[J].Proc SPIE Int Soc Opt Eng, 1995, 26(20) : 603-607.
[7]  JUNG S, HSIA T C. On neural network application to robust impedance control of robot manipulators[A].IEEE Int Conf Rob Autom[C]. Rscataway: IEEE, 1995. 869-874.
[8]  FUKUDA T, KURIHARA T, TOKITA M, et al. Position and force hybrid control of robotic manipulator by neural network[J]. Trans of JSME, Part C, 1990, 56(527) : 1854-1860.
[9]  SAADIA N, AMIRAT Y, PONTNAU J, et al. Neural hybrid control of menipulators, stability analysis[J].Robotica, 2001, 19 (1) : 41-51.
[10]  ABU-ZITAR R, NUSEIRAT A M. Neural network approach to the frictionless grasping problem[J]. J of Intelligent and Rob Sys Theor & Appl,2000, 29(1) : 27-45.
[11]  KIGUCHI K, FUKUDA T. Fuzzy neural friction compensation method of robot manipulation during position/force control[A]. Proc IEEE Int Conf Rob Autom[C]. Piscataway: IEEE, 1996. 372-377.
[12]  KIGUCHI K, FUKUDA T. Fuzzy-neuro position / force control of robot manipulators-two-stage adaptation approash[A]. IEEE Int Conf Intell Rob Syst[C]. Piscataway: IEEE, 1999. 448-453.
[13]  KIGUCHI K, FUDUDA T. Position / force control of robot manipulators for geometrically unknown objects using fuzzy neural networks[J]. IEEE Trans Ind Electron, 2000, 47(3) : 641-649.
[14]  KWAN C M, YESILDIREK A, LEWIS F L. Robust foree/motion control of constrained robots using neural network[A]. Proc IEEE Conf Decis Control[C]. Piscataway: IEEE, 1994. 1862-1867.
[15]  HU S, ANG H H Jr, KRISHNAN H. Neural network controller for constrained robot manipulators[A]. Proc IEEE Int Conf Rob Autom[C]. Piscataway: IEEE, 2000. 1906-1911.
[16]  FUJIMOTO S, OHSAKA K, ONO T. Robust trajectory tracking control of robot manipulators for high precision[J]. Trans of the JSME, Part C, 1994, 60(574) : 2071-2077.
[17]  FUKUDA T, SHIBATA T, TOKITA M, et al. Adaptation and learning for robotic manipulator by neural network[A]. Proc IEEE Conf Decis Control[C]. Piscataway: IEEE, 1990. 3283-3288.
[18]  FUKUDA T, SHIBATA T, TOKITA M, et al. Neural network application for robotic motion control--Adaptation and learning[A]. Int Jt Conf Neural Networks, IJCNN 90, Part 3 (of 3) [C]. Piscataway: IEEE,1990. 447-451.
[19]  GUEZ A, AHMAD Z. Solution to the inverse Kinematics problem in robotics by neural networks[A]. IEEE Int Conf on Neural Networki[C]. San Diego: IEEE, 1988. 617-624.
[20]  ELSLEY R K. Learning architecture for control based on back-propagation neural networks[A]. IEEE Int Conf on Neural Networks[C]. San Diego: IEEE, 1988. 587-594.
[21]  YEUNG D Y, GEKEY G A. Using a context-sensitive learning for robot arm control[A]. IEEE Int Conf Rob Autom[C]. Piscataway: IEEE, 1989. 1441-1447.
[22]  LIN S T, TZENG S J. Neural network force control for industrial robots[J]. J Intell Rob Syst Theor Appl,1999, 24(3) : 253-268.
[23]  HWANG Y, TODO I. Cooperative control of two direct-drive robots using neural networks[J]. JSME I

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133