全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用支持向量机方法识别大肠杆菌启动子

Keywords: 支持向量机,大肠杆菌启动子,识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了进一步研究大肠杆菌启动子的识别算法,结合大肠杆菌基因分子生物学的有关理论,利用支持向量机(supportvectormachine,SVM)方法对启动子进行了识别.根据启动子的序列保守性,从每个启动子样本中选取了长65bases的序列作为正样本,从大肠杆菌编码区选取相应长度的序列作为负样本,建立了基于支持向量机的分类器;并讨论了应用SVM方法时,核函数参数的选择问题.实验结果表明,基于支持向量机的识别方法能更好地提取启动子保守序列的统计特征,正样本和负样本的相关系数可以达到81.62%.

References

[1]  OZOLINE O N, DEEV A A, ARKHIPOVE M V. Non-canonical sequence elements in the promoter structure: Cluster analysis of promoters recognized by escherichia coli RNA polymerase[J]. Nucleic Acids Research, 1997, 25(23): 4703-4709.
[2]  蔡煜东,周斌,陈常庆.病毒基因组启动子识别的人工神经网络方法[J].生物数学学报,1995,10(3):116-119.CAI Yu-dong, ZHOU Bin, CHEN Chang-qing. Neural network method for virus genome promoter[J]. Journal ofBiomathematics, 1995, 10(3): 116-119. (in Chinese)
[3]  DEMELER B, ZHOU Guang-wen. Neural network optimization for E. coli promoter prediction[J]. Nucleic AcidsResearch, 1991, 19(7): 1593-1599.
[4]  O'NEIL M C. Training back-propagation neural networks to define and detect DNA-binding sites[J]. NucleicAcids Research, 1991, 19(2): 313-318.
[5]  ANDERS G P, PIERRE B, SOREN B, et al. Characterization of prokaryotic and eukaryotic promoters usinghidden markov models[A]. Proceeding of the Fourth International Conference on Intelligent Systems for MolecularBiology[C]. St. Louis: AAAI Press, 1996. 182-191.
[6]  闻芳,卢欣,孙之荣,等.基于支持向量机(SVM)的剪接位点识别[J].生物物理学报,1999,15(4):733-739.WEN Fang, LU Xin, SUN Zhi-rong, et al. SVM based recognition of splicing site[J]. Acta Biophsica Sinica, 1999, 15(4): 733-739. (in Chinese)
[7]  HERSHBERG R, BEJERANO G, SANTOS-ZAVALETA A, et al. PromEC: An Updated Database of Escherichia Coli mRNA Promoters With Experimentally Identified Transcriptional Start Sites[DB/OL]. http://bioinfo. md. huji.ac. il/marg/ promec/, 2000-10-03/2003-03-01.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133