全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

第一原理方法在材料科学中的应用

Keywords: 第一原理,密度泛函理论,赝势,材料科学

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了从理论上阐明材料结构与其特性的关系,应用第一原理方法计算材料的电子状态,可以获得材料的特征参数,从而能够表征、预测甚至设计材料的结构与性能.选择密度泛函理论和基于第一原理的赝势方法,计算得到了Al、Si、BN等的晶格常数、体弹性模量、电子密度分布和能带结构,并介绍了这些基态物理性质在材料科学中成功应用的典型事例.

References

[1]  HOHENBERG P, KOHN W. Inhomegeneous electro gas[J]. Phys Rev, 1964 , 136(3B): B864-B866.
[2]  黄昆.固体物理学[M].北京:高等教育出版社,1985. 184-185. HUANG Kun. Solid Physics[M]. Beijing: High Education Press, 1985. 184-185. (in Chinese)
[3]  LIU A Y, COHEN M L. Prediction of new low compressibility solids[J]. Science, 1989, 245: 841-842.
[4]  NIU C, LU Y Z, LIEBER C M. Experimental realization of the covalent solid carbon nitride[J]. Science, 1993,261: 334-335.
[5]  LAM P K, COHEN M L. Ab initio calculation of the static structural properties of Al[J]. Phys Rev B, 1981,24(8) : 4225-4226.
[6]  PASQUARELLO A, HYBERTSEN M S, CAR R Interface structure between silicon and its oxide byfirst-principles molecular dynamics[J]. Nature, 1998, 396: 59-60.
[7]  WENTZCOVITCH R M, CHANG K J, COHEN M L. Electronic and structure properties of BN and BP[J]. PhysRev B, 1986, 34(2) : 6061-6062.
[8]  WENTZCOVITCH R M, COHEN M L. Theoretical study of BN, BP, and BAs at high pressures[J]. Phys Rev B,1987, 36 (11) : 1076-1077.
[9]  IHM J, COHEN M L. Self-consistent calculation of the electronic structure of the (110) GaAs-ZnSe interface[J].Phys Rev B, 1979, 20(2) : 730-732.
[10]  谢希德,陆栋.固体物理能带理论[M].上海:复旦大学出版社,2000. 71-73. XIE Xi-de, LU Dong. Solid Physics Band Theory[M]. Shanghai: Fudan University Press, 2000. 71-73. (in Chinese)
[11]  WENTZCOVITCH R M, CHANG K L, COHEN M L. Electronic and structural properties of BN and BP[J].Phys Rev B, 1986, 34(2) : 1074-1075.
[12]  LU Guang-hong, KOHYAMA M, YAMAMOTO R Ab initio studies on the effects of Si and S impurities on Algrain boundary[J]. Mater Trans, 2001, 42(11) : 2239-2240.
[13]  LU Guang-hong, SUZUKI A, ITO A, et al. Effects of impurities on Al grain boundary[J]. Mater Trans , 2003,44(3) : 338-341.
[14]  LU Guang-hong, SUZUKI A, ITO A, et al. Ab initio pseudopotential studies on Al ∑=9 grain boundary:Effects of Na and Ca impurities[J]. Phil Mag Lett, 2001, 81(11) : 759-763.
[15]  LU Guang-hong, SUZUKI A, ITO A, et al. Comparison of effects of sodium and silicon impurities onaluminium grain boundaries by first-principles calculation[J]. Modelling Simul Mater Sci Eng, 2000, 8: 729-735.
[16]  KOHYAMA M. Tensile strength and fracture of a tilt grain boundary in cubin SiC: A first-principles study[J].Phil Mag Lett, 1999, 79(9) : 661-663.
[17]  FORST C J, ASHMAN C R, SCHMAN K, et al. The interface between silicon and a high-k oxide[J]. Nature, 2004, 427: 54-55.
[18]  倪军,刘华.计算物理前沿及其与计算技术的交叉[J].物理,2002,31(7) :464-465. NI Jun, LIU Hua. Forefront of computational physics and its intercross with computational technology[J]. Physics, 2002, 31(7) : 464-465. (in Chinese)
[19]  熊家炯.材料设计[M].天津:天津大学出版社,2000. 12-16. XIONG Jia-jiong. Materials Design[M], Tianjin: Tianjin University Press, 2000. 12-16. (in Chinese)
[20]  YU K M, COHEN M L, HALLER E E, et al. Observation of crystalline C3N4[J]. Phys Rev B, 1994, 49(7) :5035-5036.
[21]  ZHANG Z J, FAN S, HUANG J, et al. Diamondlike properties in a single phase carbon nitride solid[J]. ApplPhys Lett, 1996, 68(19) : 2639-2640.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133