DAVIES M G, HAGEN P O. Pathophysiology of vein graft failure: a review[J]. Eur J Vasc Endovasc Surg, 1995, 9(1) : 7-18.
[2]
LOTH F, JONES S A, ZARINS C K,et al. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses[J]. J Biomech Eng, 2002, 124(1): 44-51.
[3]
BASSIOUNY H S, WHITE S,GLAGOV S, et al.Anastomotic intimal hyperplasia: mechanical injury or flow induced[J]. J Vasc Surg, 1992, 15(4): 708-717.
[4]
PEDRINI L, PISANO E, DONATO D P M, et al. Late occlusion of aortofemoral bypass graft: surgical treatment[J]. Cardiovasc Surg, 1994, 2(6): 763-766.
[5]
MEYERSON S L, SKELLY C L, CURI M A, et al. The effects of extremely low shear stress on cellular proliferation and neointimal thickening in the failing bypass graft[J]. J Vasc Surg, 2001, 34(1): 90-97.
[6]
KEYNTON R S, EVANCHO M M, SIMS R L, et al. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study[J].J Biomech Eng, 2001, 123(5): 464-473.
[7]
OJHA M. Wall shear stress temporal gradient and anastomotic intimal hyperplasia[J]. Circ Res, 1994, 74(6): 1227-1231.
[8]
INZOLI F,MIGLIAVACCA F,PENNATI G. Numerical analysis of steady flow in aorto-coronary bypass 3-D model[J]. J Biomech Eng, 1996, 118(2): 172-179.
[9]
JAKSON Z S, ISHIBASHI H,GOTLIEB A I, et al. Effects of anastomotic angle on vascular tissue responses at end-to-side arterial grafts[J].J Vasc Surg,2001, 34(2): 300-307.
[10]
TAYLOR R S, LOH A, McFARLAND R J, et al. Improved technique for polytetrafluoroethylene bypass grafting: longterm results using anastomotic vein patches[J]. Br J Surg, 1992, 79(4): 348-354.
[11]
MILLER J H, FOREMAN R K, FERGUSON L, et al. Interposition vein cuff for anastomosis of prosthesis to small artery [J]. Aust N Z J Surg, 1984, 54(3): 283-285.
[12]
LEUPRECHT A, PERKTOLD K, PROSI M, et al. Numerical study of hemodynamics and wall mechanics in distal endto-side anastomoses of bypass grafts[J]. J Biomech, 2002, 35(2): 225-236.
[13]
LEI M, ARCHIE J P, KLEINSTRUER C. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis[J]. J Vasc Surg, 1997, 25(4): 637-646.
[14]
STEINMAN D A, VINH B, EITHIER C R, et al. A numerical simulation of flow in a two-dimensional end-to-side anas tommosis model[J].J Biomech Eng, 1993, 115(1): 112-118.
[15]
HUGHES P E, HOW T V. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis[J]. J Biomech, 1996, 29(7): 866-872.
[16]
WHITE S S,ZZRINS C K,GIDDENS D P, et al.Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length[J].J Biomech Eng, 1993, 115(1): 104-111.
[17]
LIU S Q. Focal expression of angiotension Ⅱ type 1 receptor and smooth muscle cell proliferation in the neointima of experimental vein grafts: relation to eddy blood flow[J]. Arterioscler Thromb Vasc Biol, 1999, 19(11): 2630-2639.
[18]
LIEPSCH D. An introduction to biofluid mechanics basic models and applications[J]. J Biomech, 2002, 35(4): 415-435.
[19]
WHITE C R, HAIDEKKER M, BAO X, et al. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation[J]. Circulation, 2001, 103(20): 2508-2513.
[20]
MOORE J A, STEINMAN D A,PRAKASH S. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses[J]. J Biomech Eng, 1999, 121(3): 265-272.
[21]
FEI D Y, THOMAS J D, RITTGERS S E. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study[J].J Biomech Eng, 1994, 116(3): 331-336.